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Abstract

The theoretical results of Part I [Int. J. Solids Struct. 39, 1673-1699] have been applied to beam and arch structures
using a procedure where the nonmonolithic structure is decomposed into an elastic monolithic structure and a rigid
body assemblage with partial interpenetration at the joints. Furthermore the indentation of an elastic strip by a rigid
punch with various profiles has been analysed by approximate methods. Using the extremum principles concerning the
stiffness and the extent of contact, upper and lower bounds of the stiffness characteristics have been determined. © 2002
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The theoretical results of Part I are applied to contact problems appearing in beam structures, voussoir
arches and at indentation of strips. In the following we are mainly concerned with proportional loading.
Three basic kinds of behaviour occur in these problems (Fig. 1):

(a) Decreasing contact materializes in preloaded or prestressed (¢ # 0) structures where the conforming
interfaces ([r] = 0) in the initial state are in close contact. Increasing proportional loading P decreases the
contact areas.

(b) Increasing contact materializes in structures with nonconforming interfaces ([r], > 0) and no pre-
stress (g = 0). Increasing proportional loading increases the contact area.

(c) Semilinear contact materializes in structures where in the initial unloaded state (¢p = 0) complete con-
tact prevails on all interfaces ([r] = 0). At proportional loading the contact areas are discontinuously
reduced at the start of loading and remain unchanged thereafter.

* Corresponding authors. Fax: +358-3-365-2811.
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Fig. 1. Load P versus actual contact interface I'.. (a) (- - -) Increasing contact. Structure with initial gap ([r] = %), no prestress (oo = 0).
(b) (...) Receding contact. Prestressed structure (oo # 0) without initial gaps ([r] = 0). (c) (—) Structure without initial gaps ([r] = 0)
and without prestress (oo = 0).

Cases (a) and (b) and their combination represent nonlinear contact problems. Cases including semilinear
contact provide the simplest way to determine the stiffness characteristics. Based on these solutions, by
appropriate modifications, nonlinear cases with nonconforming contact interfaces and prestress have been
investigated.

The solutions of contact problems with dissipative friction are not unique. In order to reduce this de-
ficiency special attention is paid to the use of nondissipative geometric friction, that provides unique so-
lutions. The possibilities offered by nondissipative friction have been tested on different structures.

2. Generalized displacements

If the nonmonolithic structure in the initial state is unstressed (oo = 0) and gapfree ([r] = 0), the solution
{0, u} of a boundary value problem corresponding to some load {p*,u*} can be decomposed into two
components

{67 u} = {667"‘6} + {Jl‘nuh} (1a)

Here {o.,u.} is the solution of the monolithic elastic structure at the load {p*,u*}. Hence it satisfies all
nonhomogeneous load conditions concerning stresses and displacements. {ay,u;,} is the solution of the
nonmonolithic structure loaded only by stresses p, = p — p. at the joints I'. and thus represents the state
induced by their edge effect. Generalized displacements can be determined by the equation of virtual work
(Part 1, Eq. (31)).

LJZ}SZI dQ = / p// : u/dr - /;_ p:» ' ,Yi,u dar (Yvu =" + Vnn> (lb)
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where {p”,¢”} is an admissible state of equilibrium (AE) and {«/,¢,}’} is an admissible kinematic state
(AK), Q denotes the volume, I, the external surface and I'. = U, I', denotes the interfaces of the structure.
The generalized displacement U’ of an external surface I'; may then be defined by a surface load p' = ¢/(I'))
corresponding to the generalized load P’ = 1 acting on I';. ¢’ induces in the monolithic structure a state
{ol,ul}. U'is then determined by a work equation (1b) applied to {¢’,u } and {0, u} giving

er e er e
U -1 =/ q -udl = /{JQ}T{g}dQ+/ p.-ydlr (2a)
r; Q Ie
Because Betti’s rule is valid for monolithic structures and y. = 0, we get

/Q{ag}T{g}dgz/Q{J}T{g;}dgz/ p-ugdrz/rqf-uedr (2b)

According to Egs. (2a) and (2b) we obtain
U =U+U (3a)
where
Ue":/qi-uedF; lfli=/qi-“hdF:Z/P2'YdF (3b)
F/ r/' r I,

Thus the additional displacement Uj equals the work of the p; in the cracks and joints. In the formula of
Ul each summation term

W :/ pie-de:/ P+ (u, —w)dl = U%, — Uy (3¢)
r, r,

can be interpreted as locally concentrated discontinuities (which include e.g. mutual translation v,, and
rotation ®,,) between the members (v) and (u), which are deformed according to a solution of the
monolithic structure. If the distance between the joints or cracks is small their edge-effects w'. will mutually
interact, but if the distance is sufficiently large their edge-effects will die away within the intervals. In this
case every edge-effect w’ reaches an extreme limit value.

Lemma 1. If only the load p* is prescribed (u* = 0), complementarity holds and at the supports frop ~udl' =0,
then the states of stress {o.} and {c,} corresponding to a solution {u, a} for friction angles p,  are orthogonal
and the corresponding stress energy W (o) is the sum of the energies W(a,) and W(a},)

W(p,B) = We+ Wilp,p) 4)

Proof. Expressing the stress energies by symmetric bilinear forms ¢(a,¢”)/2 we obtain

2W (6. + an) = c(0c + on, 0c + on) = ¢(0¢, 0c) + ¢(on, on) + 2¢(o, 0¢) (5)
Writing ¢(on, ge) as a dual pairing (o, &), we get (Eq. (1b))

(Ons o)y = (Phs the)oy = (Phs tgg)oy = 0 (6)

because y, = 0 and according to Lemma 1 of Part I, u.(I'.) = ul; is orthogonal to p? and p{ + p) € N(B).
Using the notations W(p, ), W., Wi(p, p) for W(o. + av), W(ae), W(ay), respectively, there follows from
Eqgs. (5) and (6) the formula (4). O
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Applying Eq. (1b) to the states {¢,o’, &'} = {p*, 0e, &} and {u, ¢, 7} induced by the load p*, we obtain
(P uyy = (p* ue)y + (P, un)y = (Oc, &)y + (Oes en)y + (Pe, V)oy- Because (p*,uc), = 2W, and recalling Eq.
(6) there follows

(P un)y = (Pes Vous 2Wh =P = Pes Vanr = (Ph> Von (7)
The generalized displacement U, induced by the load p* on I, is according to Eqs. (3a), (3b) and (7)
Uy = Upe + Upn (8a)

with

pc

1
/{ac} {e}dQ  Un=7—"7> / p.-vdl => w, (8b)
[P lp*Il 5= Jr, ;
where w, is the generalized deformation at the joint (7).

Example. A reinforced concrete beam with vertical cracks has span L, rectangular cross-section 4 = td,
reinforcement ratio u = 4,/A4 and carries a load, that induces stresses {0, 0y, Ty} in the concrete and oy,
in the reinforcement. In the monolithic structure the load induces stresses (with j = ¢, a)

. N M 30 2\° (2 12
df”(z+70?fm—ﬂ< <d>> = \d 3\d ®)

where 4 = A(1 +nuu), T=1(14n,50u/i)?), na = Ea/Ee, ne =1, u=A4,/4 and py is the distributed
transversal load. The generalized elongation v(L) of the centroidal axis is, with ¢, = n,N/4 induced by
N =1, according to formulae (2a), (2b) and (3a)—(3c)

L g, aly N Vhk
L = :/ di: e+ / eTImdA:/TdA+ —_ i = ay e 103
) é/A A" ! zk: a A EA ; 4 (= ) o)

The generalized mutual rotation w(L) of the endfaces of the beam is, with ¢/ = yn;M /I induced by M = 1,
accordingly

Yk M Ik Vi
"Y1y dd = o, Zelmkgq = [ ZdA Lok Tk 10b
/Z/ y w+glkl /H DI (10b)

where ¥4, and y, /4 are the crack-volume and its moment with regard to the elastic centroid-axis, respec-
tively. Because /4, > 0 Eq. (10a) implies, that in a beam under pure bending cracking always induces an
extension of the centroid-axis, even if the cracks do not reach the axis in question.

3. The stiffness characteristics of a rectangular panel

A rectangular elastic panel (1) with depth d, length / = 2d and cross-section 4 = td is pressed against a
rigid wall (0) at x = 0 by forces {R;}' = {N,Q,M}" at x = [ (Fig. 2). If the panel is a part of a beam, the
edge effect of the dry joint at x = 0 will die away at distance x > d from the support. Therefore the load
stresses p* acting at cross-section x = / are (Miettinen, 1988)

oo () (- (3) )
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Fig. 2. (a) Eccentrically loaded panel. (b) Kinematics and reactions at the support according to nondissipative (GFA) and dissipative
(DFA) friction.

where
qlzli- q = _3 (1 (%‘ly) ),, q3:§i (I = 4d*/12) (11b)

Let at load p* the state {o.,u.}" be the solution for the clamped monolithic beam and the state {o, u}" be
the solution for the nonmonolithic structure. According to the complementarity rule (Eq. (42), Part I) and

Eq. (2b) the generalized displacements at x = 7, {U'(1)} = {[q'(y) - u(/,y)d4}, induced by p* are
U' = U] :%/udi; UP=U/(l) = 21 /(1 — (2y/d)? Ju,d4;  U* = /yu,r (12a)
A

where U,, U, represent translations and ¢ represents a rotation. These U’ linearize the displacement u(/,y)
into

u(l,y) = (Ue(l) + 9(D)y)i + Uy (1) (12b)
The projection of the linearized displacement of the point of action of R = —Pi + Qj on the direction of R is
Up(l) = U* = ((=U(1) +9(D)e(1))P + U, (1) Q) /IR| (13a)

where e(/) = —y, is the eccentricity of P at x = /. Ug(/) can then be expressed by the resultant R or by the
compressive force P and a deformation parameter d(m, q)

__|R|d iy 12
Up = L2 5(m, ) = =-6(m,q)(1 +4) (130)
where m = ¢(0)/k; g = Q/P and k = d/6 (Fig. 3). The stiffness is then defined by
[R| _E4
DR p. )= = 57 (13¢)

By computing U/(/) of the monolithic clamped cantilever with y,, = u.(0,y) = 0 and U’(/) of the nonmo-
nolithic structure with y,, = u(0, y) # 0 on I';, we obtain by subtraction U; = U’(I) — U!(/) the displacement
caused by the deformation y,, on I'c: Un(!) = Ui(l) — Uw(l) = va({); Upn({) = U, (1)— Uye(1) = vy (1);
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Fig. 3. Element mesh used.

() = ¥(1) — 9(1); Upn(I) = Ug(l) — Uge(I). The corresponding generalized deformations at the support

w/(0) = U'(0) — U(0) = [ P - vy dI" are thus
wH(0) = v (0) = Un(D); w*(0) = vn(0) = Un(I) = lon(0); w(0) = wn(0) = Wh(1); W' = Up
(14a)
because U(0), u.(0) = 0. The w'(0) define a linearized deformation ¥, at the support
Tio = (20(0) + @n(0)y)i + v, (0)j (14b)

The generalized deformations of the joint can be expressed by the compressive force P, the deformation
parameters oy, 4, én, On and the ratios m = 6e(0)/d, g = Q/P

Pd Pd
van(0) = ﬂ’?h(’"ﬂ); vi(0) = ash(mﬂ) (15a)
Pd 5
wn(0) = E—Akah(m’q); Urn = a5h(m,(])\/ 1+gq (15b)

These deformations correspond to the limit state of free contact and they are independent of the length /—if
[ is large enough (/ > d).

A comparison was made between the geometric friction solutions (GFA) with friction angles ¢ =
fp =mn/4 and dissipative friction solutions (DFA) with ¢ = p = n/4 and Poisson’s ratio v =0.2. The
computations were carried out by the finite element method (Fig. 3) for different eccentricities m and
different ratios ¢. The support conditions were realized by very stiff bars (Fig. 2b), which were “removed”
(by reducing their stiffness sufficiently) as needed during the iteration process. In the case of nondissipative
friction at each iteration cycle all the bars in tension were removed until the state (‘“‘removed/not”) of any of
the bars did not change. In the case of dissipative friction the horizontal bars were also removed when in
tension (force X; > 0, open region). Instead a vertical bar was removed if it was in the open region or if its
force ¥; was larger than the friction allowed (|Y;| > |X;| tan @, slip region) or if it had been in the region of
slip in the previous iteration cycle. In the slip region the removed vertical bars were replaced by forces
Y; = sign(u,;)|X;| tan ¢ and during the next cycle it was checked that the displacement u,; did not change
sign; if it did, the very stiff vertical bar was restored. The iteration was continued until the state of any of the
bars did not change and the changes in all the forces ¥; became negligible. Therefore the DFA-solution
requires considerably more computation time than the GFA-solution.

The results of the computation (Figs. 4 and 5) show that the deformation parameter o,(DFA) almost
coincides with J,(GFA) but in accordance with the maximum property of the GFA-stiffness o,(GFA) <
on(DFA). Also &,(DFA) coincides closely with &,(GFA), but o,(GFA) and #,(GFA) are smaller than
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Fig. 4. Parameters of generalized joint deformations. (a) Stiffness parameters o, of Ugy. (b) Dilatation parameters #,, of v, tang =1,
(---O---) GFA solution, (---%---) DFA solution.

on(DFA) and #5,(DFA), respectively, especially if sign(m) = sign(g). On the other hand if sign(m) =
—sign(g), and consequently the resultant R remains within the panel, the difference does not exceed 10%.
This case corresponds to thrust lines within masonry and concrete structures.

4. Contact mechanics of the voussoir arch

We consider an elastic voussoir arch with fixed abutments. Special attention is paid to the stiffness
characteristics of the arch. The connection of this theory with the theory of the monolithic arch and the
linear theory of stability of arches with rigid voussoirs is analysed.

We recapitulate those points of the linear theory of stability, which we shall need in the sequel

(a) The displacements u are small and do not change the equilibrium.

(b) The voussoirs are rigid and have infinite strength.

(c) The joints do not transfer tensile stresses (o < 0).

(d) The interfaces between the blocks are conforming planes and their normal n coincides with the direc-
tion of the centroid axis of the arch (Fig. 6).

(e) Because of sufficient friction at the joints contact sliding is excluded, y, = 0, and the gap deformation
can be expressed by the dilatation

T = U+ @y (16)
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Fig. 5. Parameters of generalized joint deformations. (a) Shear parameters ¢, of v,. (b) Rotation parameters ay of wy, tang =1,
(---O---) GFA solution, (---%---) DFA solution.

where v denotes the dilatation of the centroid axis and  the mutual rotation of the end faces.

(f) The noninterpenetration requires that v + wy > 0 for any y € 4,,. Therefore, if contact between the
voussoirs is to be retained the axis of rotation is situated either on the extrados or the intrados
(y = {—c",c"}). Thus, a displacement field {u} with preserved contact between the voussoirs is possible
only if the arch is transformed into a hinge mechanism. To this corresponds a neutral state of equilib-
rium represented by a linear arch S, that passes through the hinges of the mechanism. The mechanism
and the linear arch S, define together the limit state of collapse.

The set of loads P, to which corresponds admissible equilibrium, constitutes the convex cone E(P) of
stability in the load space R”. The generatrices P" of the lateral surface of £(P) are orthogonal to the set of
load displacements U” of the collapse mechanism. These U" in turn constitute the generatrices of the convex
cone E(U) of detachment. The interior Z°(U) of Z(U) constitutes the cone of disintegration (Fig. 7c).

We base the analysis of the elastic voussoir arch on the following assumptions:

(1) No contact slidings occur at the joint, y, = 0 where g # 0.
(i1) The joints do not transfer tensile stresses o < 0.
(iil) The shear force Q(s) is small compared with the compressive force —N(s):|0| < |N|.

The state of stress and strain {0, u} induced by some load {P} is decomposed according to Section 2

{o, u} = {oc,uct + {on, un} (17)
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Fig. 6. Deformation of two adjacent voussoir halves. (a) Actual configuration. (b) Linearized decomposed configuration.

where {0, u. } corresponds to a monolithic elastic arch. Neglecting the curvature of the monolithic arch, the
longitudinal strains &, and stresses o, are thus

N(s)  M(s)y

18
< T (18)
{on, un} is a state of eigenstress induced by the edge effect of the opening gaps of the joints and is orthogonal
to {oe, ue} ({on, &) = 0). Therefore the stress energy W, can be expressed as the sum of two orthogonal parts

W(a) = We(ae) + Wh(on) (19)

ese = &0(s) + @(s)y; O =

Because dissipative work is excluded, Castigliano’s rule and Maxwell’s rule expressed by the derivatives of
W, Clapeyron’s equation, and the extremum principles of stiffness remain valid. The multiplicity rule ap-
plies also to the elastic voussoir arch. If the load {P} induces a state {o, u}, then the load {AP}, where
2. > 0, induces a state {4, Au} with unchanged contact interfaces at the joints and unchanged linear arch S.

In order to adapt the treatment of the voussoir arch to that of the monolithic arch, we consider an
assemblage of two adjacent voussoir halves (Fig. 6a). The elongation Au(y) of the assemblage can be
expressed by

Aus(y) =u, —uy_ | = v+ wy (20)

where v is the extension of the centroid axis and w denotes the mutual rotation of the end faces 4,_; and 4,.
If we decompose the displacement field {us,u,} considering the joint i as a plane of symmetry with sym-
metrical {us,u,}, induced by N’ and antisymmetrical {u,,u,}, induced by the shearforce O, the latter one
may not affect the distance Au; of symmetrically situated points (Lemma B.2, Appendix B). This implies
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Fig. 7. Semicircular arch, that comprises three voussoirs. (a) Loading, redundants and reactions. (b) Elevation. (c) Stiffness surface
F(4), stiffness ellipsoid EM(4), cone of monolithic kern E\ (P), cone of stability E(P) and cone of detachment Z(U).

that Aug(y) corresponds to a displacement field, where according to Fig. 6b the endfaces and the contact
faces of the assemblage remain plane.

Let the dimensions of the voussoir be length /, depth d and cross-section A. The effect of the curvature is
overlooked in the following. The generalized deformations v and w are determined according to Section 2
by using elastic states {d/, ¢.} and {o”, &/} induced by a constant normal force N/ = 1 and constant bending
moment M” = 1, respectively, applied to the monolithic straight segment (y, = 0)

1 v

1

OJse = Z; G;e = Tgye = y;ye = 0; S;e = ﬂ; 8lye = _E_A (21)
Y )y vy

O-Is/c = 7; a;lc = Tlsivc = V;,w = 0; ‘L';,c = E; S;Ic = E (22)

Proceeding according to Section 2 (Egs. (2a) and (2b), (3a) and (3b)) we get the work equations

1-1;:/0 AugdAd = //o 9dAds+/ 0L Vnd4
_ 1 B s wdd [ Nds /vndA
_/I/AEAJSdAds V/1/AEAaydAdS+/Ai 1 =) Ea + | 4 (23)

l.w:/a”AusdA //a”edAds—&—/ 0 VndA
v B ¥y ymdd [ Mds / yy,dA4
// ogsdA ds v/l/AEIGydAdS+/Ai T A + | (24)
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Because of condition (iii), the terms with ¢, have been be neglected. The first integrals to the right express
the elongation of the centroid axis Au(0), = v. and the rotation w., respectively, of the monolithic voussoir
(o = 0). [p,d4 =V} represents the gap volume and [yy,d4 = w4 represents its moment. For the ex-
tension Aug(y) the Eqs. (23) and (24) provide a linearized decomposition according to Eq. (20)

Aug(y) = Au(y), + Au(y)y;  Au(y), = ve+ oey; Auy)y = v, + 0fy =7 (25)

where v, = [[(N/EA)ds, w. = [,(M/EI)ds, vj = V1/4, o) = wVi/I. Aun(y) represents the linearized gap
deformation 7' at joint (i). Thus we arrive at the configuration of Fig. 6b. The blocks deform according to
Navier’s assumption and adjacent endfaces experience a mutual rotation ! around a hinge (a) with or-
dinate y, within the cross-section in the interval [k, e], where £ is the kern point distance of the cross-section.

We assume that v}, and o}, together with the interpenetration wi, at level i = M'/|N’| depend solely on
local N(s') and M(s') at joint (i). According to the multiplicity rule the v}, wj, and wy; = —Auy(e) at given

eccentricity e’ = —7 of |N'| are proportional to |[N'|. In the limit case of free contact, where stress-singu-
larities do not occur, vy, wj and wy; can be expressed by

i |Ni|d i i |Ni|d RN i i |Ni‘d i

v, =ﬁnh(m JA); o = ik |on (m', A)[signM";  wyy = 7 on(m', 2) (26)

where m' = ¢'/k and 1 = 1/d. Because M' = |[N'|e’ and wi;, = e'w}, — v}, and Eq. (26), there applies

1 00y O cop _ N

_ 1 0o _h_ ¢ 27
2am7 Pn k k”]h’ pa k ol ( )

On =moy, — 1, > 0; oy
where ¢ is the edge distance and oy, n, are nonnegative. If |m| < 1 then oy, 1, o, = 0 and if |m| — |¢/k| then
On, |om|, ny, — oo. In order to extract the edge effects vy, wy, wy and y,, y, for a voussoir with variable N, M
we resort to the field {u,¢,7} of symmetrically loaded (Q = 0) straight voussoirs where at the joints </,
7i = 0. Since Clapeyron’s equation is valid and |Auy(y,)| = wi, we get, neglecting the effect of shearforce O
and transversal loads, using Eq. (26)

_ _ _ o Nd _
21 = IV Aun(e') = [Nl = D25 i ),

o E4 (28)
aVVhl_|]\]l|d ( [;L)_Ui' aVVh’_‘Nl‘do(( i))_wi
oNi B4 WU T 0 mun T gy M) = On

For a voussoir with rectangular cross-section 4 = bd, approximate expressions of dy, n;,, o, including four
limit cases have been determined. Usually 4 > 1 and in this case dy, #,, o, attain limit values not depending
on A. The following approximations are used (Parland, 1995)

N 2 (I =" B+ (2= |m])|m)oy
PEV =B 3G T
] = (4—|m|+r2— \’:’\))511 (29)
1= (|m| —2)
where r = 0.55.

The above deductions imply that the state {o, u} of the arch can be decomposed into a monolithic part
{0e,u.} with a continuous displacements field u. and stresses o. of the monolithic arch according to
Navier’s rule, and a nonmonolithic part {oy,,u;} characterized by discrete linear discontinuities 7, at the
joints with hinges within the cross-sections. The voussoir arch is thus kinematically decomposed into a
monolithic elastic arch AR, and a pseudo arch AR}, with rigid voussoirs and discrete hinges at some joints.
These structures are connected by the same linear arch S. Therefore neither of them separately complies
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Fig. 8. Prestressed granite beam; load—deflection u,,.

with the conditions of fixed abutments. The equilibrium of the AR, does not coincide with that of the
original clamped monolithic arch ARY.

The equilibrium of the arch is determined by three redundants, the horizontal thrust H, the shear force Z
and moment X which act at the elastic centroid of the arch (Fig. 7a). These determine together with the
nonredundant N°, M° the normal force N and moment M

N(s) = N° — Hcosv — Zsin¥; N:/adA

! (30)

M(s) =M" — Hz — Zx + X; M:/aydA
A

where z(s) denotes the ordinate of the axis of the arch and cos = dx/ds.

An analysis of the arch according to the force method is based on the minimum condition of the stress
energy W,. According to Eq. (19) W, can be expressed as the sum of W, of the monolithic arch and the sum
> W of the stress energies induced by the opening of joints

1 [L/N? M 1« (N)d .,
VVJ—E/O (H‘FE)dS—l—EZ I 5h<m7)\.) (31)

The solution with respect to the redundants corresponding to fixed abutments is obtained by
ow,  ow, @tho. ow, ow; aWhiO. ow, oW, oW,
OH OoH ©0H ' oz 0oz 0oz T oX oX ox
where the derivatives of W, and W represent the mutual translations v.,, vy, and v, vn, and rotations we, wy

of the abutments, respectively (Fig. 7a). Inserting M and N from Eq. (30) and applying Egs. (31) and (32),
substitution with 7 = 4i*> gives

0 (32)
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1 z\2 Ncosd Mz INi|d (. zZ
H - 2 < _ M i i 2
(/LEA(COS 19—%—(1.) )ds) /L( T +EI )ds—i-zi: T (nhcosﬁ—i—koch)
1/ ., X2 B Nsing  M°x IN'|d . X
Z(/LEA<s1n 19—1—(;) )ds)/L< 7 EI> Z hsmzﬂ—;och (33)
ds Mods |Nl|d ;
X —
(/L IE) f Z Eak

If the sums on the right sides of the equations are zero, we get the well-known equations for the monolithic
arch AR? with fixed abutments. From the Eq. (33) we can iteratively solve the unknowns H, Z and X.
Because of the strong and progressive nonlinearity (as function of eccentricity m'(H,Z, X)) of the terms
containing #j, o on the right side of Eq. (33), an iteration process with gradually increasing underrelax-
ation (as function of m’ and oscillations observed in the solution process) has been used. As starting point
for the iteration process the solution of the monolithic structure (which we get using m’ =0, and
i, = of, = 0, on the right side of the Eq. (33)) or, when solving for several gradually changing loading-cases,
the solution of a previous loading-case have been used with success.
The following limit-case modes can be derived from the above equations:

(a) If a set of loads { A} induces solutions, where at every joint |m| < 1, the sums on the right of Eq. (33)
are zero and the arch behaves monolithically. The set { P} constitutes, because of the superposition law,
in R" a convex cone Ey, the cone of the monolithic kern of the arch.

(b) If the load P induces a linear arch S which approaches the intrados and extrados ¢/, the hinges ())
approach gradually the points (y}) of action of S within 4". Thus, if |¢'| — |c'| then [y;| — |¢'| and dp, 1y,
|oy| — oo and the sums of the right members of Eq. (33) begin to dominate over the integrals. Since
|pt| — |m'| — |¢'/k| (Eq. (27)), the displacement field approaches that of a rigid body mechanism.

The behaviour of the arch can be given a more transparent interpretation by the stiffness D, the stiffness
vector 4, and stiffness surface F(4). According to Eq. (19) and Part I, Eq. (59b) there applies

2 2
,_IPE P
T awr T aw o

(34)

Every iteration step, that corresponds to an admissible state AE, provides a lower bound D’ to D, where the
kinematical conditions at the abutments are violated. The stiffness vector 4 and the stiffness surface F(A4)
are defined by (Part I, Egs. (65a) and (66))

A;=D'?R/IP; F(4)=2W,(4)=1=0 (35)

The stiffness surface F(4) is contained in the cone of stability £(P), and F(4) and E(P) have a common
origin at the apex of the cone E(P). The load—displacement U is orthogonal to F(4). In addition:

(a’) If the load P is within the cone of the monolithic kern Ej the F(A) coincides with the stiffness ellip-
soid EM(4) of the monolithic arch (Proposition 3, Part I).

(b’) Immediately outside Ey is a region of {A} where F'(4) closely follows EM(4) inside the ellipsoid, that
forms an osculating surface of F(4).

(¢’) Farther from Ey the surface F(4) withdraws from EM(4) with decreasing |4|. The load—displace-
ment U is orthogonal to F(4).
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(d’) For small A the stiffness surface F(4) approaches asymptotically a generatrix of the cone of stability
E(P) and the load—displacement will approach a generatrix of Z(U), the normal cone of E(P) (Proposi-
tion 4, Part I).

Example. We consider a semicircular arch, with radius » of the centroid axis, and constant depth d. The
arch is loaded along the centroid semicircle by a radial load p constant in each quadrant; p(s) = p(1 £ 0),
where (+) and (—) signs are attributed to the left and right quadrants, respectively (Fig. 7a and b). To this
there corresponds a symmetric load ps(s) = p and an antimetric load p,(s) = £0p. We choose the statically
determinate state given on Fig. 7a, corresponding to a vertical resultant P, = 2rp and a horizontal resultant
P, = 02rp, respectively, at the centre C of the semicircle and three redundant forces H, Z and X. For
the loads P;, P, and admissible H, Z and X (with corresponding |m'| < 3) lower bound approximations of the
stiffness D, the stiffness vector {4} and the stiffness surface F(4), are determined by Egs. (34) and (35). The
maximum value of D/, corresponding to the actual stiffness D, is attained with the values of H, Z and X,
satisfying Eq. (33). These values have been determined for different load-parameters 6 and the resulting
stiffness surface F(4) is presented in Fig. 7c. The stiffness ellipse EM(4), the cone Ex(P) of the monolithic
core and the cone of stability E(P) of the arch with rigid voussoirs (determined by the linear theory of
stability) are

2 2
4, 4,
M: | ———— | +| ————| =1; E(P):|P|—0.046505P, <0;
<1.1324«/EA/r> (0.29638,/EA/r> HP): A
E(P) : |Py| — 0.28928P, <0 (36)

According to (a’)—(d’) for small 6-values F(4) coincides with EM(4) within Ey. Outside Ey the curve F(A)
gradually withdraws from EM(4) and finally approaches asymptotically the generatrix of E(P).

5. Stiffness characteristics of a prestressed segmental beam with unbonded tendon

We consider a simply supported centrically prestressed granite beam with one ungrouted tendon and a
vertical dry joint at midspan (Fig. 8). The dimensions of the beam are: depth d = 45 cm, length L, = 520
cm, span L = 510 cm, width b = 15 cm, cross-section 4. = bd = 677.2 cm?, Young’s modulus E. = 48000
MPa. The tendon: cross-section 4, = 5.41 cm?, Young’s modulus £, = 202000 MPa, initial prestressing
force Fy = 474 kN. F; corresponds to a prestressing dislocation

RL 1 E, 4a
7’ =, (Lo) — % (Lo) = E(ZAi <1 +nu); (n AR Ac> (37)

Two loads T = P/2 are applied symmetrically at distance a = L/3 from the supports. They induce a mo-
ment M = Pa/2 at the joint and, together with the prestress Fy, at the lower edge the normal stress

Pa FO 3Pu

K
W/ = 3T D m =gy -

where m, denotes the nominal relative eccentricity of the compressive force Fy at the joint. If my < 1, the
joint remains closed and o,(d/2) < 0. If my > 1, the joint opens, which induces an additional extension
Av, = ¥(0) = F,dn,(m)/E.A. of the centroid axis and an increase in the force F, of the tendon (F, > F).
Since the dislocation between granite and tendon is fixed to []’, we obtain
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=22 <L0<1+%)—dnh(m))—[r]o; m=0s (39)

T EA. ~Fd

where m is the true relative eccentricity at the joint. Because of the length of the beam segments, the pa-
rameter values 7, and oy, comply with Eq. (29). From Eq. (39) we can solve the value F,(P) iteratively (F, is
contained in the argument m of the very nonlinear function #,(m)). Using Eqs. (37) and (39) the prestress
can be expressed by Fy and m

_ RLo(1+np) . m_ L(I 4 np) — dnpny (m)
Y Lo(1+np) — dngy(m)” mo Lo(1 +np)

(40)

The state of stress and strain {o, u} can be decomposed {0, u} = {o.,u.} + {on, un}, where {o.,u.} rep-
resents the state of the monolithic beam without tendon loaded by two loads 7 = P/2 with stress distri-
butions

b =Ml 0~ 0; Ty =22 (1= (2p/d)’) 0 (41a,b,0)

{on,un} is the state induced by the prestress F, and the edge effect of the opening joint and where the
deformations of the initial state (£, = Fy, P = 0) are not included.

The load—displacements U, are determined according to Section 2, Eqgs. (3a) and (3b) using the stresses
{02} induced by the loads P* =1/2

bpmeMdx  a yy 5P a Vo
U,=Uy+ Uy = — 244 = — 42
p = Ype T o /0 Bl 2), 1. DEL 21 (422)

The first term to the right expresses the load—deflection U, of the monolithic beam. The second term
expresses the edge effect of the opening joint and it can, according to Eq. (10b) and analogously to Eq. (26),
be written as

aliyn _a F.d

U = — N =
T T2 Tk

o (m) (42b)

where wy, represents the concentrated rotation at the joint. Uy, belongs to the additional deflection u,y(x) of
the beam that represents a triangular distribution with an apex at the joint. The load—displacement is thus
according to Eqgs. (42a) and (42b)

(sa3 +9dT(’”>) (43)

The extension of the centroid axis v and the mutual rotation w of the endfaces of the beam are recalling Eqs.
(9) and (10a) with N = 0 and normal force N, = —F, in the granite
h_ Fd ¢ M, wh _ P2 Fdo(m)

_Vh _FRa g [ M o _ Pa” | Fadon(m) 44
V=g =g o= | T = (44)

Up = U U = 37

Formulae (42a), (42b) and (43) presuppose that the material is linearly elastic and the joint interfaces are
completely smooth. In reality the roughness of the interfaces increases the deformability and the micro-
cracks in the granite induce nonlinear effects. To these should be added macrocrack phenomena.

The theoretical results were compared with experimental results obtained from a loading test according
to Fig. 8. Up to a load P/2 = 48 kN cracking did not occur and the greater deformability of the structure
tested is clearly perceptible. Instead of vertical cracks a horizontal crack at load P/2 = 48 kN discontin-
uously increased the displacements. This was caused by the transverse tensile stress o, at the joint with the
greatest value
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which exceeded the maximum longitudinal tensile stress o,(d/2) (Eq. (38)) of the undisturbed part of the
segment. The maximum ¢, at the joint occurs close to the border of the contact region, where oy, y, — 0.
Because the compressive stress distribution o,(y) approximately approaches the triangular distribution
corresponding to crack distance A = 0, the horizontal crack reduces the effective depth of the beam from d
to dy = (3 — |m|)d /2. This implies that in the middle third of the span the effect of the longitudinal crack on
the displacements corresponds to deformation parameters (Eq. (26)) at 4 = 0 (Parland, 1995)
(Im —1)" a (Im—1)* a (4 —|m[)(Im| - 1) a
Oop &2 o —; o =} - 46
TR L € 7 A BTt T (46)
Using these values, upper bounds for u,, v, and w; for loads above the cracking load P/2 = 48 kN are
calculated. The results are shown in Figs. 8 and 9.

6. Indentation of an elastic strip on a rigid foundation by a rigid punch

Let the height of the strip be d and its thickness ¢, let the profile of the punch be A(x) = Us|x|" and its
width be d,. The contact problem of the strip can be treated in two ways (Gladwell, 1980, Parland and
Miettinen, 1985):

(a) The nonlinear problem: the prescribed vertical load P} = [, r. pydx acts on an inextensible cover of the
strip with unchanged profile (x) = U;|x[", that defines the initial vertical gap [r],. The contact area I'c
increases monotonously with the load P;". The displacements u(x) of the cover on I', are determined by the
prescribed U; and the vertical translation U of the punch. We have thus the conditions

Uey(x) = U? — U5 |x|"; Uee(x) =0 (47a)
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/ pydx =Ff (47b)

(b) The semilinear problem: by releasing U, we get according to Part I, Appendix A the complementary
conditions

U () = U = USll"s i) = 0 (48a)

/pydszl*; /py|x|"dx:P2*; /pxdxzo (48b)
I I'c I'e

The load is defined by the prescribed vertical resultant P and the prescribed P; that represents the nth
moment of the vectors p,dx. The initial gap is zero ([r] = 0) and the profile of the punch deforms con-
tinuously with (x) = US|x|" and U} and U} depend linearly on P; and P;. When P > 0 the contact area
decreases discontinuously from d,, to the fixed value 2a. In this case the multiplicity rule applies.

The difference between nonlinear and semilinear loading manifests itself by the zero point x, of u,(x,0)
that expresses a nominal extent of the penetration (Fig. 10) defined by

fn:xn/d:\“/Ul/Ug/d (49)

At nonlinear loading Uj is fixed whereas U, increases with P;. Therefore the penetration is represented by
parallel curves (Fig. 10a). At semilinear loading the ratio U, /U, is independent of the load intensity and &,
attains a fixed value (Fig. 10b) at increasing load P;.

In the semilinear problem with load intensity P;, P, the external work of the load is

[ puwar=u? [ pax—ut [ xrpdc= ROl - RO =Pl (0a)
I I'c I'e

(a)
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Fig. 10. Indentation of elastic strip. (a) Nonlinear loading. (b) Semilinear loading.
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where Up = U} — (P;/P;)U). The external work equals the internal work 2 + (p,7), where on the upper
(v =0) edge (p,7), = tfrc |o|]y,/(tan ¢ — tan ) dx and on the lower (y = d) edge we presuppose {(p,7) = 0.
Using the notations k = a/d and md"P; = Py (Fig. 11) and

PiUp =2W + (p, 7)oy (50b)

we can express U] and U) as functions of P, m and «, which in turn are functions of ¢ and . If the
multiplicity rule applies we get

Pr Py
VR = Fonm, ) US() = 2L

P,
o O(m, x); Up(k) =

il
Et

o(m,x) (51a)

In the limit state of free contact n(m, k), 0(m, k) and d(m, k) attain at xy = ao/d extreme values n(m), 0(m)
and 6(m) with displacements

go _ Pnlm) o P0G Pro(m)

VT TR 27 Etdn P E

(51b)

where Uy is the displacement of P} /2 at the distance » = m'/"d from the origin. The parameters 7, 0 and &
satisfy

o(m) = n(m) — m6(m) (Slc)

With load intensity |P;| the corresponding stiffness is

Pl Et
= = —_— 2
Up — 8(m) (52)
If the friction is nondissipative, then there applies
1 (P)? 195 m> o [0
= _P'Up =12 §(m); 0=—-_—; =—— | =
Wo =571 Up = 3 0lm); 2om’ " T2 om\m2 (532,b,¢)

In Appendix A are given the calculations for frictionless indentation by a wedgeshaped punch (n = 1), a
parabolic punch (n = 2) and an eccentrically loaded rectangular punch (n = 0). The results are shown in
Figs. 11-13.

In the nonlinear case, with U; fixed and ¢ = 0, the initial gap is [r], = Us|x|". With y, = —[r], and
(p,72) = PYU; the work of the load P; is

PiU) =2W + P)U;, where PZO:t/ || x| dx (54)
We have in this case advancing contact, where P;0 = Etd"U; and the contact area I'; increases, with the

load Py, gradually from zero to 2a. Using the expressions (51b) we obtain at given P; and U;

s__ A 1 = U 40 5 U a0
' EwdU; 0 U"_dnU;_ 0’ Ul_dnU;‘ 0 (55)

where P, represents the dimensionless load and U? the dimensionless translation of the rigid punch, being
proportional to the nth power of the nominal penetration width (Eq. (49)). In this case upper bound so-
lutions {u/,7'} and lower bound solutions {u”,¢"} with ¢'(m') = 0"(m") = 0(m) correspond to different
values of m', m” and m.

The stiffnesses D, = P; /U, and D; = P;/U} are expressed by the dimensionless stiffnesses as functions
of 0
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Fig. 11. Semilinear indentation of strip by a wedge. (a) Dependence of stiffness parameters on ay /d; they attain stationary values in the
limit state. (b) Stiffness parameters versus load distance m = r/d.

~ P 1 P 1
D=z =557 D=7 =wm (56)

The corresponding load—-displacement and stiffness-curves for n = 1 are given in Fig. 14.
If the friction is purely dissipative (f = 0, ¢ = p), the stiffness characteristics depend on the dissipative
work. In the semilinear case this can be written as

(p.y) = t/ |o]|7| tan ¢ dx (57a)
rc

with the bounds (Part I, Eq. (77a)) at the same external load P;
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<pf7 Vf>¢,0 = <pa V> < <pb7 ’yb>q),0 (57b)

where {p",7'} and {p°, 7} correspond to the solutions of the nondissipative problem with ' = ¢ and
B° = 0, respectively. The corresponding work expressions are

ay ay
W) =1 / o ||y tan o d;  (p,3°), 0 = 1 / 16°] 178 tan @ dx (57¢)

ap —ap
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Fig. 14. Nonlinear indentation of strip. Increasing contact. Relative load P of wedge versus relative load—displacements U; and Usp.

The integrals in Eqgs. (57a) and (57c) are confined to the slip-region I's < 2a,. Choosing as load intensity Py,
the work equation for purely dissipative friction (¢ # 0; f = 0) is

P Up(,0) = 207 + ¢ / o] 7] tan @ dx (58)
I

Recalling that Up = U, —md"U,, and Eqgs. (78c), (79a) and (80b) of Part I, and using the notation
=070/ (Pr)?, we obtain the estimates

12
sim.0.0) =22 (14 (1))

b(m 0,p) 4Et 4Ei /2
5ii(m>(p70> = 1 +5m00<p + (1 +t>(m(;ctp))

inf 6(m, @,0) = d(m, ¢,0) = 6(m, 0, p) + Etc

sup 3(m, 9,0) < (59)

From Eq. (59) estimates of U, = P;d(m, ¢,0)/Et and of the stiffness D(m, ¢,0) = P; /U, = Et/d(m, ¢,0) are
obtained (Fig. 15a).

In the nonlinear case the gap deformation, where p, > 0, is as before y, = —h. The work equation at the
friction (¢, 0) is therefore with p,, = i + |alj; v,, = 7.1 — 4]

7yl

+a +a
PIU, =2W +z,7,) — o], 7,) = 2W+t/ ryxdx+t/ |o|h(x)dx (60)

—a a

The work [y, dx is positive if no reversals of slip occur. Because 4(x) = |x|"U; and P{ =1 [* |o||x|"dx =
md"Py, we can write, according to Eq. (58),

PIU, :2W+z/wxdx+1>2°u; — P Up(¢,0) + md"P; U; (61)
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Fig. 15. Indentation of a strip by a wedge, tan ¢ = 0.75. (a) Semilinear case, shaded area corresponding to tan p = 0.75 (b) nonlinear
case.

where P;Up corresponds to the semilinear problem. Eq. (61) can according to Eqgs. (51a)-(51c) with

U; /P; = 0" be written as
P (P . :
PU =—~ = 2
lUl Et 7](9 7@70) Et (5<0 7(pa0)+m0 ) (6 )
From this we get for given 6* the upper bound estimates
51‘(0*) @, 0) + sup(m(ﬁ)Q*)
! (63)

supn(@",0,0) <3 5.0, ,0) + sup(m(B)0")
B
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Analogously a lower bound for P;U, at given U, is obtained
inf 1(0%) > 5,(0",0.0) + inf (m(§)0") (64)

where f is restricted to the interval [0, ¢]. From Egs. (63) and (64) corresponding estimates of the stiffness
D, = Py /U, = Et/n(0) are determined (Fig. 14b).

7. Summary and conclusions

The theoretical results of Part I are applied to structures with contact problems. Particular attention is
paid to the inter-relations of the following characteristics:

1. The cone of the monolithic core Ex (P, p, ), where the principle of superposition remains valid.

2. The stiffness ellipsoid EM(P) of the monolithic structure.

3. The stiffness D(P, p, f§) and the stiffness surface F (4, p, §), where 4 = \/D(P, p, f)P/|P| denotes the stiff-
ness vector.

4. The cone of stability E(P, p, §) of the structure.

The effect of dry joints and cracks on a generalized displacement U’ can be extracted by decomposing the
state of stress and displacement {o, u}, at given loads, into a state {g., u.} of the elastic monolithic
structure and a state {o,, uy} induced by the discontinuities at the joints I'.. Using the stressfield {o’}
induced by load P’ = 1 acting at region I';, U’ is then expressed by

U' = U+ Uj; U{;:Z/F.pé-de:ij

where U! and U] are the generalized displacements of the monolithic structure and a quasi rigid structure,
respectively. The w’ represent generalized discontinuities, including translations and rotations at joint . In
this way it is possible to decompose the nonmonolithic structure into a monolithic elastic structure and a
quasi rigid structure that deforms with partial interpenetration at the joints. The above transformation of
displacement discontinuities implies actually an extension of Reissner’s condensation of the laws governing
the displacement field of plates.

The following structures have been analysed using the principle of complementarity and the extremum
principles of stiffness and extent of contact:

(a) A rectangular panel eccentrically pressed against rigid support.
(b) Loading of a semicircular elastic voussoir arch.

(c) Bending of a prestressed segmental beam.

(d) Indentation of an elastic strip by a rigid punch.

The decomposition into a monolithic part and a quasi rigid part is most obvious in case (b) (Fig. 6 Voussoir
arch), but it is clearly perceptible also in case (c) (Fig. 8).
Concerning the friction we can distinguish between two cases:

(i) Frictional contact sliding does not occur (0 < |t| < |o|tan ¢; includes frictionless contact).
(ii) Frictional contact sliding does occur (0 < |z] < |g| tan @).
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In case (i) the solution is independent of the path of loading and unique, if during loading the condition
|t| < |o|tan ¢ holds. Nonlinear contact problems with initial gaps at the joints (4 > 0) and prestress
(o9 < 0) can be transformed into semilinear problems (2 = 0, gy = 0) by change of structure and loading.
These results have been applied to a prestressed segmental beam and to indentation problems. For the latter
case upper and lower bounds of stiffness and corresponding generalized displacements have been obtained
by elementary means (Fig. 12). From these results the displacement parameters of the nonlinear cases with
rigid stamps have been determined (Fig. 14).

In case (i1) with frictional contact sliding the solution depends on the loading path and is generally not
unique also at proportional loading. In this case with semilinear loading (i.e. gy = [r] = 0) the stiffness
proper D(P, ¢,0) in contrast to other characteristics approaches D(P, 0, ¢) from below, the closer the more
continuous the contact is. In many cases the stiffness corresponding to nondissipative friction provides
sufficiently close bounds for D(¢, 0) with D(0,0) < D(¢,0) < D(0, ¢). Still closer bounds can be established
for the infima and suprema of the stiffness D(¢p,0) using the contact sliding components y, of the non-
dissipative solution.

The examples of Part II indicate thus that the complications caused by the indeterminateness connected
with dissipative friction can at proportional loading be effectively reduced by the use of nondissipative
friction with conical restraints of the deformations y at the joints.
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Appendix A. Indentation without friction. Semilinear loading

To begin with we assume the interfaces at y = 0 and d to be detachable (y = 0) and smooth (¢, f = 0).
For n = 1, the semilinear case materializes if we replace the rigid wedge by two rigid plates connected by a
hinge and loaded by two symmetrical loads P;/2 at distances » from the hinge. The symmetry leads to the
equilibrium conditions at x = 0 (Part I, Appendix A)

g@=1gm~mﬂ=m mm=ﬂﬂ—lumw=o (A1)

A lower bound D/(0,0) of the stiffness is obtained assuming a vertical uniaxial compression field
{d)(x,y) = —=p,(x)/t, 0} = T, = 0}, with corresponding stress energy W, = td [ (aj)zdx/ZE. According to
the principle of the maximum stiffness, an optimal 7 where to, = —p, is subjected to the constraints (A.1),
at given a, corresponds to

. d
min #(0,0) = = ((F;)" = 3PP} /a+ 3(P; /a)’) (A2)
o a
The limit state of free contact is according to Proposition 5, Part I attained at the value ay = 3P; /Py,
where min (/) attains a supremum and the displacements U; and U, attain extrema. Hence there applies
according to Castiglianos’s rule
3 2 3 2
_d(Pl) . //_d(Pl) . " d(Pl) " 2d(P1)

3Py ' 3EwPy’ P 9py(p;)? T 9EP; (A3

sup (m{rin w0, O))
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With m = P /(dP}) and k; = d]/d = 3m, the parameters 1, 6 and o of Egs. (51b) and (51c) attain the values
2 1 1

&) =55 ) =5 0 =g

(A4)
An upper bound solution is obtained using the continuous displacement fields:
Region I |x|<a; 0<y<d
u, = (U, — Uhlx)(1 — y/d); u, = v(Ux — Uxx*/2)/d (A.S)
with &, = —(Uy — Ualx|)/d; & = —ve,; 9, = —(1 —y/d)Ussign(x)
Region II: |x| > a and |x'| =a+a; — |x|; |¥|<a
u, = (U — al)(1 = y/d)x' /a; u. =v(U| —aUy)x'/(2ad) + C (A.6)
with & = (U] —aU))x'/(aid); &, = —ve,; v, = (U —aUy)x' /(aid)
Region III: If |x| > a+ a; then u, = u, = 0.
The potential energy of the system is

a+aj
/ / ( Vi )>dxdy—P1*U1 + P, (A7)
—a—ay

By 1nsert1ng the formulas for ¢, and y,, from Egs. (A 5) and (A.6) and denoting ¢'/d =/, | /d = x| and
e =K +K)/3, ca = k(K + 2K, /3), ¢ = K'(k' + K})° /3 the potential energy gets the form

n = Et(c;(U))’ = 2c,UL UL + ¢3(U3)?) — PrUL + P U, (A.8)
The minimum condition of = with respect to U{, U; and x| gives k| = (2 + 2v)7l/ * and according to Eq.
(51a)
cym? — 2com + 3 ¢35 — com
2(cies = (¢2)) 2(cies = (¢2))

These parameters depend on ' = d'/d and because x| differs only little from the value x; of the AE state we
can choose k{, = kj = 3m. The corresponding values 6" (m), #"(m), 0"(m) and &'(m), n'(m), 0'(m) are shown
in Fig. 11b. Because of the extremum principles of stiffness, there holds

&' (m) < 8(m) < ' (m) (A.10)

The approximate solutions for semilinear problem of a punch with a parabolic profile (n = 2) h(x) = Usx>
(Fig. 12) can be solved analogously In the lower bound solution with P; = md*P; the contact area is
determined by the limit value xj = (5m)~ /2 and the stiffness parameters are

8" (m) = 0.6(5m)""%  n"(m) = 0.75(5m)""%; 0"(m) = 0.75(5m)? (A.11)

An upper bound solution is obtained by replacing |x| by x* in Egs. (A.1) and (A.5). The stiffness parameters
are obtained from Eq. (A.9) by using

Cr —cim

&' (m, ') = ;o O(mx) =

o (my i) = (A9)

2(ciez — )

o = W)+ CZZW; oy = WO+ 56) + 56 (€ + 4 /3)) o)

3 15
where again k; = kj = (Sm)l/ ? provides a good approximation.

Smooth indentation (tan ¢ = 0) by a rectangular punch corresponds to n = 0. The strip is resting on a
rigid foundation without friction but with adherence, u,(x,d) = 0. The width of the punch is d,, and the load
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is applied eccentrically at x, = e, = mid (Fig. 13). An upper bound solution with corresponding lower
bounds for parameters #'(m,), 0'(m,) and &' (m,) are determined by FEM using a continuous displacement
field in the strip.
A lower bound solution for the inclined punch is obtained by using three different stress-functions F* in
the contact region a, F® in region b to the right and F° in region c to the left of a
F*=g,(0)(1 —cosmw) + f({); 0<v<
F* = g,(0)(1 —cosmv); vp<v < oo (A.13)
FC =g (0)(l —cosmv); —oo<v<0
where { =x/d, v =y/d = 2y/d,. The stresses corresponding to functions F" are
o, = g’ cosmv;  a), = g/ (1 —cosm)/d* + 6if" /d*; T, = —(glmsinmw)/d’ (A.14)

where i = a, b, ¢, and the commas denote differentiation with respect to .
Because 1,, = 0 on the upper and lower edges of the strip and at |x| = oo the stress energy is

W= t/(2E)//(ax+(ry)2dxdy (A.15)

Using Kantorovich’s method, a solution is obtained by minimizing W with the conditions on the upper
edge, Eq. (A.16), and the continuity and limit state conditions, Eq. (A.17), at x=0and x =a

—t/ o%(x,0)dy = P; —t/ ya,(x,0)dy = Pey; aﬁ(x, 0) =05(x,0)=0 (A.16)
(U 0 .
a2(0,y) = 0%(0,y);  oi(a,y) =o2(a,y); T,(0,y) =15,(0,p); T (a,y) =10 (a,y) (A.17)

The minimum condition of W provides expressions for g,, gy, g. and f”
ga = A, coshn{ + B,n{ cosh n{ + C, sinh n{ + D,n{ sinh n{
gy =€ *(dycos Bl + Bysin f{); o = 0.6748n
g = €“(A.cos pL + B.sin fC); B =0.3493n
"= —g' + Ed(U, — d(U,)

(A.18)

From Egs. (A.16) and (A.17) the 10 unknown constants A,, B,, .. ., U, U, are determined as functions of P
and m, = e;/d. We express the generalized displacements by

P P

U =—= ;0 Upy=—

L= g tm)s U =g

where u,(x,0) = U, — xU,. These U,, U,, Up correspond to contact length a, that is smaller than the width

dy, of the punch. Let the value my correspond to a = d,, with 69(d,,0) = 0. We obtain the eccentricities for

my > myy using the superposition Lemma B.1 (Appendix B) for unchanged contact regions by applying the

load P! = (1 — k)P at x; = e,y = myd, and P> = kP at x = d, — e,q. The resulting eccentricities are there-

fore, with d, = 2d// and 0<x <1

et = (1 —x)ew + k(d — ew) = ed + k(d — 2e1q); My = mg + K(2/2 — 2myq) (A.20)
P' induces u}(0,0) = (1 — x)U} and P* induces u;(0,0) = x(U} — U;d) = k(U} — 2d,U; /1), where U} and
U) correspond to P! at x = e,q and U7 and U5 correspond to P* at x = d, — eq. But because of the sym-
metric position of P' and P? with respect to the midpoint x = d,/2, there holds: U} = U/; U; = U,.
Applying the superposition rule we obtain finally

Om); U = uy(e,0) = 5(m) (A.19)
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u(x,0) = U, —xU,
Uy = (1 -x)U + (U} —2d,U, /%) = Ul —2dxU)} /2 (A.21)
Uy = (1 —x)U} —xU3; = (1 —2K)U;

Recalling Eq. (A.19) we obtain
n(m) = n(ma) — 2x0(mq) /2
O(m) = (1 — 2x)0(mq) (A.22)
o(m) = (ma) — ma0(my)

Thus we can determine the stiffness parameters for all eccentricities e; in the interval 0 < e; < d,, (Fig. 13).

In frictionless case applying the superposition lemma (Appendix B) the deductions for the rectangular
punch can be used to determine the stiffness characteristics for an eccentrically loaded rigid punch on the
elastic strip. Let a centrical load P, on the punch with symmetrical profile yy = Us|d,/2 — x|" and width d,
induce a state {u.} of complete contact with contact length @ = d,. The superposition of {u.} on any so-
lution of limit state {u,} with the same contact length a, = d, of a rectangular punch loaded by an ec-
centrical load P, = kP, provides then a solution {u} for an eccentrically loaded punch with an arbitrary
symmetric profile

{u} ={uct +{u}; vy = Uic = Uneldy/2 = x["; = Uy, —xUy, (A-23)
where
P, KPe
U]C = =N U]r = 7’77‘(’"[(1)
Vo7 Ef A24
P, . Kb A
UZC = Eitd 60 flxed; U2r = Wer(mld)

The solution {u} corresponds to a resulting load P =PF(l+ k) with eccentricity m =e/d =
(0.5 + kmyg) /(1 + ).

Appendix B. Uniqueness and superposition at dissipative friction
If [r], oo = 0 and f§ = 0 there applies the following proposition.

Proposition B.1. If complementarity prevails and to load p*, u* there corresponds a solution {a,u}, this so-
lution is unique provided either the normal stress o or the slip deformation v, is prescribed on every contact
surface I'. where y, = 0.

Proof. The proof follows the procedure in the proof of Theorem 1 (Part I). Let us consider two solutions
{c',u'}, {6, u*}. Then, because of complementarity according to Eq. (52b, Part I), there holds

a(u? =i 1 =) + (o — 9P =7y = 0 (B.1a)

2 1,2

where a(u® — u',u?> — u') is positive definite and the second term can be expressed by

<p2 _pl,,VZ - yl>OH = <7‘-2 - Tl7y12> + <Tl - Tzaytl> + <62 - Glayi> + <O-1 - 0.2’,))111> (Blb)

or alternatively by

P =P = oy = (2 =) + (Tl =) + (6%, p2 = ph) + (ot vk —72) (B.1c)
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Because stresses and deformations are admissible they are subjected to the sectional normality rule (Eq.
(20), Part I)

1 (Tl =)o) 2 0; i, j={1,2} (B.2)

If ¢' = ¢ is prescribed on I'. then the left hand side of Eq. (B.1b) becomes nonnegative because of
Eq. (B.2). If again we prescribe y! =y? where 7! =72 =0 the expression (B.lc) equals zero. Because
a(u* —u',u* — u') is positive definite, the left hand side of Eq. (B.1a) becomes nonnegative from which

there follows {a',u'} = {¢*,4’}. O
The following superposition rule applies irrespective of the kind of friction.

Lemma B.1. If load {p",u"*} induces a state {c',u'} with actual contact interfaces UI'. and load {p**,u*"}
induces a state {c*,u*} with the same contact interfaces UI',, then the load {p*,u*} = {p"* + p**,u" + u**}
induces a state {o,u} = {c' + %, u' + u*} with unchanged interfaces UI ., provided that either 7', 7* or 1!, 7

vanish identically on UI...

The lemma follows immediately from the correspondence rule and by application of Eq. (B.1a) to the
expression a(u — (u' +u?),u — (u' + u?)).

Lemma B.2. If a dry joint Iy, constitutes a plane of symmetry in a sufficiently large part AQ of the structure
an external load p* acting on AQ can be decomposed into a symmetric part p! and an antisymmetric part p;,.
Then the region of actual contact is determined uniquely by p, being independent of p: (Kalker, 1990).

Proof. Let a detachable joint I',, in the structure constitute a plane yz of symmetry with normal in direction
x. A symmetric load p; will then induce a symmetrical state {o,u}, where the change in distance between
symmetrically situated points is Aus = uy(X) — sy (—x) = 2u,(x). If we add to p; an antisymmetrical load
p; and either y, = 0 or f =0 on I',,, this will induce an additional antisymmetrical state {o,u}, where the
distance between symmetrically situated points does not change Au,, = u,,(x) — u,,(—x) = 0 and the con-
tact region remains unchanged I'., = I',. The load p* = p! + p; induces a state {o,u} to which applies the
superposition rule

{o,u} ={o,u},+{o,u}, (B.3)

This follows directly from Proposition B.1, Lemma B.1 and the noncommutative superposition of {a, u},
and {o,u},. O
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