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Abstract

The theoretical results of Part I [Int. J. Solids Struct. 39, 1673–1699] have been applied to beam and arch structures

using a procedure where the nonmonolithic structure is decomposed into an elastic monolithic structure and a rigid

body assemblage with partial interpenetration at the joints. Furthermore the indentation of an elastic strip by a rigid

punch with various profiles has been analysed by approximate methods. Using the extremum principles concerning the

stiffness and the extent of contact, upper and lower bounds of the stiffness characteristics have been determined. � 2002

Elsevier Science Ltd. All rights reserved.
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1. Introduction

The theoretical results of Part I are applied to contact problems appearing in beam structures, voussoir
arches and at indentation of strips. In the following we are mainly concerned with proportional loading.
Three basic kinds of behaviour occur in these problems (Fig. 1):

(a) Decreasing contact materializes in preloaded or prestressed (r0 6¼ 0) structures where the conforming
interfaces ð½r� ¼ 0Þ in the initial state are in close contact. Increasing proportional loading P decreases the
contact areas.
(b) Increasing contact materializes in structures with nonconforming interfaces ð½r�n > 0Þ and no pre-
stress (r0 ¼ 0). Increasing proportional loading increases the contact area.
(c) Semilinear contact materializes in structures where in the initial unloaded state (r0 ¼ 0) complete con-
tact prevails on all interfaces ð½r� ¼ 0Þ. At proportional loading the contact areas are discontinuously
reduced at the start of loading and remain unchanged thereafter.
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Cases (a) and (b) and their combination represent nonlinear contact problems. Cases including semilinear
contact provide the simplest way to determine the stiffness characteristics. Based on these solutions, by
appropriate modifications, nonlinear cases with nonconforming contact interfaces and prestress have been
investigated.

The solutions of contact problems with dissipative friction are not unique. In order to reduce this de-
ficiency special attention is paid to the use of nondissipative geometric friction, that provides unique so-
lutions. The possibilities offered by nondissipative friction have been tested on different structures.

2. Generalized displacements

If the nonmonolithic structure in the initial state is unstressed (r0 ¼ 0) and gapfree ð½r� ¼ 0Þ, the solution
fr; ug of a boundary value problem corresponding to some load fp	; u	g can be decomposed into two
components

fr; ug ¼ fre; ueg þ frh; uhg ð1aÞ
Here fre; ueg is the solution of the monolithic elastic structure at the load fp	; u	g. Hence it satisfies all
nonhomogeneous load conditions concerning stresses and displacements. frh; uhg is the solution of the
nonmonolithic structure loaded only by stresses ph ¼ p � pe at the joints Cc and thus represents the state
induced by their edge effect. Generalized displacements can be determined by the equation of virtual work
(Part I, Eq. (31)).Z

X
r00
ije

0
ij dX ¼

Z
Ce

p00 
 u0 dC �
Z

Cc

p00lm 
 c0
ml dC ðcml ¼ ct þ cnnÞ ð1bÞ

Fig. 1. Load P versus actual contact interface Cc. (a) (- - -) Increasing contact. Structure with initial gap ð½r� ¼ hÞ, no prestress (r0 ¼ 0).

(b) (. . .) Receding contact. Prestressed structure (r0 6¼ 0) without initial gaps ð½r� ¼ 0Þ. (c) (––) Structure without initial gaps ð½r� ¼ 0Þ
and without prestress (r0 ¼ 0).
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where fp00; r00g is an admissible state of equilibrium (AE) and fu0; e0; c0g is an admissible kinematic state
(AK), X denotes the volume, Ce the external surface and Cc ¼ [rCr denotes the interfaces of the structure.
The generalized displacement Ui of an external surface Cj may then be defined by a surface load pi ¼ qiðCjÞ
corresponding to the generalized load P i ¼ 1 acting on Cj. qi induces in the monolithic structure a state
frie; uieg. Ui is then determined by a work equation (1b) applied to frie; uieg and fr; ug giving

Ui 
 1 ¼
Z

Cj

qi 
 udC ¼
Z

X
frieg

TfegdX þ
Z

Cc

pie 
 cdC ð2aÞ

Because Betti’s rule is valid for monolithic structures and cie ¼ 0, we getZ
X
frieg

TfegdX ¼
Z

X
frgTfeiegdX ¼

Z
Ce

p 
 uie dC ¼
Z

Cj

qi 
 ue dC ð2bÞ

According to Eqs. (2a) and (2b) we obtain

Ui ¼ Ui
e þ Ui

h ð3aÞ

where

Ui
e ¼

Z
Cj

qi 
 ue dC; Ui
h ¼

Z
Cj

qi 
 uh dC ¼
X
r

Z
Cr

pie 
 cdC ð3bÞ

Thus the additional displacement Ui
h equals the work of the pie in the cracks and joints. In the formula of

Ui
h each summation term

wi
r ¼

Z
Cr

pie 
 cdC ¼
Z

Cr

pie 
 ðum � ulÞdC ¼ Ui
mh � Ui

lh ð3cÞ

can be interpreted as locally concentrated discontinuities (which include e.g. mutual translation vml and
rotation xml) between the members (m) and (l), which are deformed according to a solution of the
monolithic structure. If the distance between the joints or cracks is small their edge-effects wi

r will mutually
interact, but if the distance is sufficiently large their edge-effects will die away within the intervals. In this
case every edge-effect wi

r reaches an extreme limit value.

Lemma 1. If only the load p	 is prescribed (u	 ¼ 0), complementarity holds and at the supports
R

C0
p 
 udC ¼ 0,

then the states of stress freg and frhg corresponding to a solution fu; rg for friction angles q, b are orthogonal
and the corresponding stress energy W ðrÞ is the sum of the energies W ðreÞ and W ðrhÞ

W ðq; bÞ ¼ We þ Whðq; bÞ ð4Þ

Proof. Expressing the stress energies by symmetric bilinear forms cðr; r00Þ=2 we obtain

2W ðre þ rhÞ ¼ cðre þ rh; re þ rhÞ ¼ cðre; reÞ þ cðrh; rhÞ þ 2cðrh; reÞ ð5Þ

Writing cðrh, reÞ as a dual pairing hrh; eeiH we get (Eq. (1b))

hrh; eeiH ¼ hph; ueioY ¼ hp0h; u0eBioY ¼ 0 ð6Þ

because ce ¼ 0 and according to Lemma 1 of Part I, ueðCeÞ ¼ u0eB is orthogonal to p0e and p
0
e þ p0h 2 NðBÞ.

Using the notations W (q, b), We, Wh(q, b) for W (re þ rh), W ðreÞ, W ðrhÞ, respectively, there follows from
Eqs. (5) and (6) the formula (4). �
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Applying Eq. (1b) to the states fqi; ri; eig ¼ fp	; re; eeg and fu; e; cg induced by the load p	, we obtain
hp	; uiY ¼ hp	; ueiY þ hp	; uhiY ¼ hre; eeiH þ hre; ehiH þ hpe; cioH . Because hp	; ueiY ¼ 2We and recalling Eq.
(6) there follows

hp	; uhiY ¼ hpe; cioH ; 2Wh ¼ hp � pe; cioH ¼ hph; cioH ð7Þ
The generalized displacement Up induced by the load p	 on C	

e is according to Eqs. (3a), (3b) and (7)

Up ¼ Upe þ Uph ð8aÞ
with

Upe ¼
1

p	k k

Z
X
fregTfeegdX; Uph ¼

1

p	k k
X
r

Z
Cr

pe 
 cdC ¼
X
r

wr ð8bÞ

where wr is the generalized deformation at the joint (r).

Example. A reinforced concrete beam with vertical cracks has span L, rectangular cross-section A ¼ td,
reinforcement ratio l ¼ Aa=A and carries a load, that induces stresses frxc; ryc; sxycg in the concrete and rxa
in the reinforcement. In the monolithic structure the load induces stresses (with j ¼ c, a)

rjxe ¼ nj
N

A

�
þ M

I
y
�
; sxye ffi

3Q

2A
1

 
� 2y

d

� �2
!
; rye ffi

3py
4t

2y
d

 
� 1

3

2y
d

� �3
!

ð9Þ

where A ¼ Að1þ nalÞ, I ¼ Ið1þ na
P

ðya=iÞ2Þ, na ¼ Ea=Ec, nc ¼ 1, l ¼ Aa=A and py is the distributed
transversal load. The generalized elongation vðLÞ of the centroidal axis is, with ri

e ¼ njN=A induced by
N ¼ 1, according to formulae (2a), (2b) and (3a)–(3c)

1 
 vðLÞ ¼ =
L

0

Z
A

nj
A
ux dA ¼ ve þ

X
k

Z
Ak

riecnk
A

dA ¼
Z

N

EA
dAþ

X
k

Vhk
A

; ðnj ¼ fna; ncgÞ ð10aÞ

The generalized mutual rotation xðLÞ of the endfaces of the beam is, with rie ¼ ynjM=I induced by M ¼ 1,
accordingly

1 
 xðLÞ ¼ =
L

0

X
j

Z
A

njy
I
ux dA ¼ xe þ

X
k

Z
Ak

riecnk
I

dA ¼
Z

M
EI

dAþ
X
k

yhkVhk
I

ð10bÞ

where Vh and yhVh are the crack-volume and its moment with regard to the elastic centroid-axis, respec-
tively. Because Vh P 0 Eq. (10a) implies, that in a beam under pure bending cracking always induces an
extension of the centroid-axis, even if the cracks do not reach the axis in question.

3. The stiffness characteristics of a rectangular panel

A rectangular elastic panel (1) with depth d, length l ¼ 2d and cross-section A ¼ td is pressed against a
rigid wall (0) at x ¼ 0 by forces fRigT ¼ fN ;Q;MgT at x ¼ l (Fig. 2). If the panel is a part of a beam, the
edge effect of the dry joint at x ¼ 0 will die away at distance xP d from the support. Therefore the load
stresses p	 acting at cross-section x ¼ l are (Miettinen, 1988)

p	 ¼
X
i

qiRi ¼
N
A

�
þ MðlÞ

I
y
�
iþ 3Q

2A
1

 
� 2y

d

� �2
!
j ð11aÞ
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where

q1 ¼ 1

A
i; q2 ¼ 3

2A
1

 
� 2y

d

� �2
!
j; q3 ¼ y

I
i ðI ¼ Ad2=12Þ ð11bÞ

Let at load p	 the state fre; uegT be the solution for the clamped monolithic beam and the state fr; ugT be
the solution for the nonmonolithic structure. According to the complementarity rule (Eq. (42), Part I) and
Eq. (2b) the generalized displacements at x ¼ l, fUiðlÞg ¼ f

R
qiðyÞ 
 uðl; yÞdAg, induced by p	 are

U 1 ¼ UxðlÞ ¼
1

A

Z
A
ux dA; U 2 ¼ UyðlÞ ¼

3

2A

Z
A
ð1� ð2y=dÞ2Þuy dA; U 3 ¼ #ðlÞ ¼ 1

I

Z
A
yux dA ð12aÞ

where Ux, Uy represent translations and # represents a rotation. These Ui linearize the displacement uðl; yÞ
into

uðl; yÞ ¼ ðUxðlÞ þ #ðlÞyÞiþ UyðlÞj ð12bÞ

The projection of the linearized displacement of the point of action of R ¼ �P iþ Qj on the direction of R is

URðlÞ ¼ U 4 ¼ ðð�UxðlÞ þ #ðlÞeðlÞÞP þ UyðlÞQÞ=jRj ð13aÞ

where eðlÞ ¼ �yp is the eccentricity of P at x ¼ l. URðlÞ can then be expressed by the resultant R or by the
compressive force P and a deformation parameter dðm; qÞ

UR ¼ Rj jd
EA

dðm; qÞ ¼ Pd
EA

dðm; qÞð1þ qÞ1=2 ð13bÞ

where m ¼ eð0Þ=k; q ¼ Q=P and k ¼ d=6 (Fig. 3). The stiffness is then defined by

DðR; q; bÞ ¼ Rj j
UR

¼ EA
dd

ð13cÞ

By computing Ui
eðlÞ of the monolithic clamped cantilever with c10 ¼ ueð0; yÞ ¼ 0 and UiðlÞ of the nonmo-

nolithic structure with c10 ¼ uð0; yÞ 6¼ 0 on Cc, we obtain by subtractionUi
h ¼ UiðlÞ � Ui

eðlÞ the displacement
caused by the deformation c10 on Cc: UxhðlÞ ¼ UxðlÞ � UxeðlÞ ¼ vxhðlÞ; UyhðlÞ ¼ UyðlÞ�UyeðlÞ ¼ vyhðlÞ;

Fig. 2. (a) Eccentrically loaded panel. (b) Kinematics and reactions at the support according to nondissipative (GFA) and dissipative

(DFA) friction.
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#hðlÞ ¼ #ðlÞ � #eðlÞ; URhðlÞ ¼ URðlÞ � UReðlÞ. The corresponding generalized deformations at the support
wið0Þ ¼ Uið0Þ � Ui

eð0Þ ¼
R

Cc
pie 
 c10 dC are thus

w1ð0Þ ¼ vxhð0Þ ¼ UxhðlÞ; w2ð0Þ ¼ vyhð0Þ ¼ UyhðlÞ � lxhð0Þ; w3ð0Þ ¼ xhð0Þ ¼ #hðlÞ; w4 ¼ URh

ð14aÞ
because Ui

eð0Þ, uieð0Þ ¼ 0. The wið0Þ define a linearized deformation c10 at the support

c10 ¼ ðvxhð0Þ þ xhð0ÞyÞiþ vyhð0Þj ð14bÞ
The generalized deformations of the joint can be expressed by the compressive force P , the deformation
parameters ah, gh, eh, dh and the ratios m ¼ 6eð0Þ=d, q ¼ Q=P

mxhð0Þ ¼
Pd
EA

ghðm; qÞ; myhð0Þ ¼
Pd
EA

ehðm; qÞ ð15aÞ

xhð0Þ ¼
Pd
EAk

ahðm; qÞ; URh ¼
Pd
EA

dhðm; qÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
ð15bÞ

These deformations correspond to the limit state of free contact and they are independent of the length l––if
l is large enough (l > d).

A comparison was made between the geometric friction solutions (GFA) with friction angles u ¼
b ¼ p=4 and dissipative friction solutions (DFA) with u ¼ q ¼ p=4 and Poisson’s ratio m ¼ 0:2. The
computations were carried out by the finite element method (Fig. 3) for different eccentricities m and
different ratios q. The support conditions were realized by very stiff bars (Fig. 2b), which were ‘‘removed’’
(by reducing their stiffness sufficiently) as needed during the iteration process. In the case of nondissipative
friction at each iteration cycle all the bars in tension were removed until the state (‘‘removed/not’’) of any of
the bars did not change. In the case of dissipative friction the horizontal bars were also removed when in
tension (force Xj > 0, open region). Instead a vertical bar was removed if it was in the open region or if its
force Yj was larger than the friction allowed ðjYjj > jXjj tanu, slip regionÞ or if it had been in the region of
slip in the previous iteration cycle. In the slip region the removed vertical bars were replaced by forces
Yj ¼ signðuyjÞjXjj tanu and during the next cycle it was checked that the displacement uyj did not change
sign; if it did, the very stiff vertical bar was restored. The iteration was continued until the state of any of the
bars did not change and the changes in all the forces Yj became negligible. Therefore the DFA-solution
requires considerably more computation time than the GFA-solution.

The results of the computation (Figs. 4 and 5) show that the deformation parameter dh(DFA) almost
coincides with dh(GFA) but in accordance with the maximum property of the GFA-stiffness dhðGFAÞ <
dh(DFA). Also eh(DFA) coincides closely with eh(GFA), but ah(GFA) and gh(GFA) are smaller than

Fig. 3. Element mesh used.
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ah(DFA) and gh(DFA), respectively, especially if signðmÞ ¼ signðqÞ. On the other hand if signðmÞ ¼
�signðqÞ, and consequently the resultant R remains within the panel, the difference does not exceed 10%.
This case corresponds to thrust lines within masonry and concrete structures.

4. Contact mechanics of the voussoir arch

We consider an elastic voussoir arch with fixed abutments. Special attention is paid to the stiffness
characteristics of the arch. The connection of this theory with the theory of the monolithic arch and the
linear theory of stability of arches with rigid voussoirs is analysed.

We recapitulate those points of the linear theory of stability, which we shall need in the sequel

(a) The displacements u are small and do not change the equilibrium.
(b) The voussoirs are rigid and have infinite strength.
(c) The joints do not transfer tensile stresses (r6 0).
(d) The interfaces between the blocks are conforming planes and their normal n coincides with the direc-
tion of the centroid axis of the arch (Fig. 6).
(e) Because of sufficient friction at the joints contact sliding is excluded, ct ¼ 0, and the gap deformation
can be expressed by the dilatation

cn ¼ vþ xy ð16Þ

Fig. 4. Parameters of generalized joint deformations. (a) Stiffness parameters dh of URh. (b) Dilatation parameters gh of vxh, tanu ¼ 1,

(- - - - - -) GFA solution, (- - - - - -) DFA solution.
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where v denotes the dilatation of the centroid axis and x the mutual rotation of the end faces.
(f) The noninterpenetration requires that vþ xyP 0 for any y 2 Alm. Therefore, if contact between the
voussoirs is to be retained the axis of rotation is situated either on the extrados or the intrados
(y ¼ f�c�; cþg). Thus, a displacement field fug with preserved contact between the voussoirs is possible
only if the arch is transformed into a hinge mechanism. To this corresponds a neutral state of equilib-
rium represented by a linear arch Sn that passes through the hinges of the mechanism. The mechanism
and the linear arch Sn define together the limit state of collapse.

The set of loads P , to which corresponds admissible equilibrium, constitutes the convex cone EðPÞ of
stability in the load space Rm. The generatrices Pn of the lateral surface of EðP Þ are orthogonal to the set of
load displacements Un of the collapse mechanism. These Un in turn constitute the generatrices of the convex
cone NðUÞ of detachment. The interior N0ðUÞ of NðUÞ constitutes the cone of disintegration (Fig. 7c).

We base the analysis of the elastic voussoir arch on the following assumptions:

(i) No contact slidings occur at the joint, ct ¼ 0 where rs 6¼ 0.
(ii) The joints do not transfer tensile stresses rs 6 0.
(iii) The shear force QðsÞ is small compared with the compressive force �NðsÞ:jQj � jN j.

The state of stress and strain fr; ug induced by some load fPg is decomposed according to Section 2

r; uf g ¼ re; uef g þ rh; uhf g ð17Þ

Fig. 5. Parameters of generalized joint deformations. (a) Shear parameters eh of vyh. (b) Rotation parameters ah of xh, tanu ¼ 1,

(- - - - - -) GFA solution, (- - - - - -) DFA solution.
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where fre; ueg corresponds to a monolithic elastic arch. Neglecting the curvature of the monolithic arch, the
longitudinal strains ese and stresses rse are thus

ese ¼ e0ðsÞ þ _xxðsÞy; rse ¼
NðsÞ
A

þMðsÞy
I

ð18Þ

frh; uhg is a state of eigenstress induced by the edge effect of the opening gaps of the joints and is orthogonal
to fre; ueg ðhrh; eei ¼ 0Þ. Therefore the stress energy Wr can be expressed as the sum of two orthogonal parts

W ðrÞ ¼ WeðreÞ þ WhðrhÞ ð19Þ

Because dissipative work is excluded, Castigliano’s rule and Maxwell’s rule expressed by the derivatives of
W , Clapeyron’s equation, and the extremum principles of stiffness remain valid. The multiplicity rule ap-
plies also to the elastic voussoir arch. If the load fPg induces a state fr; ug, then the load fkPg, where
k > 0, induces a state fkr; kug with unchanged contact interfaces at the joints and unchanged linear arch S.

In order to adapt the treatment of the voussoir arch to that of the monolithic arch, we consider an
assemblage of two adjacent voussoir halves (Fig. 6a). The elongation DusðyÞ of the assemblage can be
expressed by

DusðyÞ ¼ uv � uv�1 ¼ vþ xy ð20Þ

where v is the extension of the centroid axis and x denotes the mutual rotation of the end faces Av�1 and Av.
If we decompose the displacement field fus; uyg considering the joint i as a plane of symmetry with sym-
metrical fus; uygs induced by Ni and antisymmetrical fus; uyga induced by the shearforce Q, the latter one
may not affect the distance Dus of symmetrically situated points (Lemma B.2, Appendix B). This implies

Fig. 6. Deformation of two adjacent voussoir halves. (a) Actual configuration. (b) Linearized decomposed configuration.
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that DusðyÞ corresponds to a displacement field, where according to Fig. 6b the endfaces and the contact
faces of the assemblage remain plane.

Let the dimensions of the voussoir be length l, depth d and cross-section A. The effect of the curvature is
overlooked in the following. The generalized deformations v and x are determined according to Section 2
by using elastic states fr0

e; e
0
eg and fr00

e ; e
00
eg induced by a constant normal force N 0 ¼ 1 and constant bending

moment M 00 ¼ 1, respectively, applied to the monolithic straight segment (cn ¼ 0)

r0
se ¼

1

A
; r0

ye ¼ s0sye ¼ c0sye ¼ 0; e0se ¼
1

EA
; e0ye ¼ � m

EA
ð21Þ

r00
se ¼

y
I
; r00

ye ¼ s00sye ¼ c00sye ¼ 0; e00se ¼
y
EI

; e00ye ¼ � my
EI

ð22Þ

Proceeding according to Section 2 (Eqs. (2a) and (2b), (3a) and (3b)) we get the work equations

1 
 v ¼
Z
A

r0
seDus dA ¼

Z
1

Z
A

r0
seedAdsþ

Z
Ai

r0
secn dA

¼
Z
1

Z
A

1

EA
rs dAds� m

Z
1

Z
A

1

EA
ry dAdsþ

Z
Ai

cndA
A

ffi
Z
1

N ds
EA

þ
Z
Ai

cndA
A

ð23Þ

1 
 x ¼
Z
A

r00
seDus dA ¼

Z
1

Z
A

r00
eedAdsþ

Z
Ai

r00
secn dA

¼
Z
1

Z
A

y
EI

rs dAds� m
Z
1

Z
A

y
EI

ry dAdsþ
Z
Ai

ycndA
I

ffi
Z
1

M ds
EI

þ
Z
Ai

ycndA
I

ð24Þ

Fig. 7. Semicircular arch, that comprises three voussoirs. (a) Loading, redundants and reactions. (b) Elevation. (c) Stiffness surface

F ðDÞ, stiffness ellipsoid EMðDÞ, cone of monolithic kern EkðPÞ, cone of stability EðP Þ and cone of detachment NðUÞ.
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Because of condition (iii), the terms with ry have been be neglected. The first integrals to the right express
the elongation of the centroid axis Duð0Þe ¼ ve and the rotation xe, respectively, of the monolithic voussoir
(cn ¼ 0).

R
cn dA ¼ Vh represents the gap volume and

R
ycn dA ¼ yhVh represents its moment. For the ex-

tension DusðyÞ the Eqs. (23) and (24) provide a linearized decomposition according to Eq. (20)

DusðyÞ ¼ DuðyÞe þ DuðyÞh; DuðyÞe ¼ ve þ xey; DuðyÞh ¼ vih þ xi
hy ¼ ci ð25Þ

where ve ¼
R
lðN=EAÞds, xe ¼

R
lðM=EIÞds, vih ¼ Vh=A, xi

h ¼ yhVh=I . DuhðyÞ represents the linearized gap
deformation ci at joint (i). Thus we arrive at the configuration of Fig. 6b. The blocks deform according to
Navier’s assumption and adjacent endfaces experience a mutual rotation xi

h around a hinge (a) with or-
dinate ya within the cross-section in the interval ½k; e�, where k is the kern point distance of the cross-section.

We assume that vih and xi
h together with the interpenetration wi

ph at level y
i
p ¼ Mi=jNij depend solely on

local NðsiÞ and MðsiÞ at joint (i). According to the multiplicity rule the vih, xi
h and w

i
ph ¼ �DuhðeiÞ at given

eccentricity ei ¼ �yip of jNij are proportional to jNij. In the limit case of free contact, where stress-singu-
larities do not occur, vih, xi

h and w
i
ph can be expressed by

vih ¼
Nij jd
EA

ghðmi; kÞ; xi
h ¼

Nij jd
EAk

ahðmi; kÞj jsignMi; wi
ph ¼

Nij jd
EA

dhðmi; kÞ ð26Þ

where mi ¼ ei=k and k ¼ 1=d. Because Mi ¼ jNijei and wi
ph ¼ eixi

h � vih and Eq. (26), there applies

dh ¼ mah � gh > 0; ah ¼
1

2

odh
om

; qh ¼
yh
k
¼ cah
kgh

; qa ¼ � ya
k
¼ gh

ah
ð27Þ

where c is the edge distance and dh, gh are nonnegative. If jmj6 1 then dh, gh, ah ¼ 0 and if jmj ! jc=kj then
dh, jahj, gh ! 1. In order to extract the edge effects vh, xh, wh and yh, ya for a voussoir with variable N , M
we resort to the field fu; e; cg of symmetrically loaded (Q ¼ 0) straight voussoirs where at the joints si,
cit ffi 0. Since Clapeyron’s equation is valid and jDuhðypÞj ¼ wi

h we get, neglecting the effect of shearforce Q
and transversal loads, using Eq. (26)

2W i
h ¼ Nij jDuhðeiÞ ¼ Nij jwi

ph ¼
ðNiÞ2d
EA

dhðmi; kÞ;

oW i
h

oN i
¼ Nij jd

EA
ghðmi; kÞ ¼ vih;

oW i
h

oMi
¼ Nij jd

EAk
ahðmi; kÞ ¼ xi

h

ð28Þ

For a voussoir with rectangular cross-section A ¼ bd, approximate expressions of dh, gh, ah including four
limit cases have been determined. Usually k > 1 and in this case dh, gh, ah attain limit values not depending
on k. The following approximations are used (Parland, 1995)

dh ffi
ffiffi
r

p
ð1� ð mj j � 2Þ2Þr ð mj j � 1Þ3

3ð3� mj jÞ ; gh ffi
ð3þ rð2� mj jÞ mj jÞdh

1� ð mj j � 2Þ2
;

ahj j ffi ð4� mj j þ rð2� mj jÞÞdh
1� ð mj j � 2Þ2

ð29Þ

where r ¼ 0:55.
The above deductions imply that the state fr; ug of the arch can be decomposed into a monolithic part

fre; ueg with a continuous displacements field ue and stresses re of the monolithic arch according to
Navier’s rule, and a nonmonolithic part frh; uhg characterized by discrete linear discontinuities cn at the
joints with hinges within the cross-sections. The voussoir arch is thus kinematically decomposed into a
monolithic elastic arch ARe and a pseudo arch ARh with rigid voussoirs and discrete hinges at some joints.
These structures are connected by the same linear arch S. Therefore neither of them separately complies
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with the conditions of fixed abutments. The equilibrium of the ARe does not coincide with that of the
original clamped monolithic arch AR0

e.
The equilibrium of the arch is determined by three redundants, the horizontal thrust H , the shear force Z

and moment X which act at the elastic centroid of the arch (Fig. 7a). These determine together with the
nonredundant N 0, M0 the normal force N and moment M

NðsÞ ¼ N 0 � H cos#� Z sin#; N ¼
Z
A

rdA

MðsÞ ¼ M0 � Hz� Zxþ X ; M ¼
Z
A

ry dA
ð30Þ

where zðsÞ denotes the ordinate of the axis of the arch and cos# ¼ dx=ds.
An analysis of the arch according to the force method is based on the minimum condition of the stress

energy Wr. According to Eq. (19) Wr can be expressed as the sum of We of the monolithic arch and the sumP
W i

h of the stress energies induced by the opening of joints

Wr ¼ 1

2

Z L

0

N 2

EA

�
þM2

EI

�
dsþ 1

2

X
i

ðNiÞ2d
EA

dhðmi; kÞ ð31Þ

The solution with respect to the redundants corresponding to fixed abutments is obtained by

oWr

oH
¼ oWe

oH
þ oWh

oH
¼ 0;

oWr

oZ
¼ oWe

oZ
þ oWh

oZ
¼ 0;

oWr

oX
¼ oWe

oX
þ oWh

oX
¼ 0 ð32Þ

where the derivatives of We and Wh represent the mutual translations vex, vhx and vez, vhz and rotations xe, xh

of the abutments, respectively (Fig. 7a). Inserting M and N from Eq. (30) and applying Eqs. (31) and (32),
substitution with I ¼ Ai2 gives

Fig. 8. Prestressed granite beam; load–deflection up.
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H
Z
L

1

EA
cos2 #

��
þ z

i

� �2�
ds
�

¼
Z
L

N 0 cos#

EA

�
þM0z

EI

�
dsþ

X
i

N ij jd
EA

gih cos#þ zi

k
aih

� �

Z
Z
L

1

EA
sin2 #

�
þ x

i

� �2�
ds

� �
¼
Z
L

N 0 sin#

EA
þM0x

EI

� �
dsþ

X
i

N ij jd
EA

gih sin#þ xi

k
aih

� �

X
Z
L

ds
IE

� �
¼ �

Z
L

M0ds
EI

�
X
i

N ij jd
EAk

aih

ð33Þ

If the sums on the right sides of the equations are zero, we get the well-known equations for the monolithic
arch AR0

e with fixed abutments. From the Eq. (33) we can iteratively solve the unknowns H , Z and X .
Because of the strong and progressive nonlinearity (as function of eccentricity miðH ; Z;X Þ) of the terms
containing gih, aih on the right side of Eq. (33), an iteration process with gradually increasing underrelax-
ation (as function of mi and oscillations observed in the solution process) has been used. As starting point
for the iteration process the solution of the monolithic structure (which we get using mi ¼ 0, and
gih ¼ aih ¼ 0, on the right side of the Eq. (33)) or, when solving for several gradually changing loading-cases,
the solution of a previous loading-case have been used with success.

The following limit-case modes can be derived from the above equations:

(a) If a set of loads fPkg induces solutions, where at every joint jmj < 1, the sums on the right of Eq. (33)
are zero and the arch behaves monolithically. The set fPkg constitutes, because of the superposition law,
in Rn a convex cone Ek, the cone of the monolithic kern of the arch.
(b) If the load P induces a linear arch S which approaches the intrados and extrados ci, the hinges (yia)
approach gradually the points (yip) of action of S within Ai. Thus, if jeij ! jcij then jyiaj ! jcij and dh, gh,
jahj ! 1 and the sums of the right members of Eq. (33) begin to dominate over the integrals. Since
jqiaj ! jmij ! jci=kj (Eq. (27)), the displacement field approaches that of a rigid body mechanism.

The behaviour of the arch can be given a more transparent interpretation by the stiffness D, the stiffness
vector D, and stiffness surface F ðDÞ. According to Eq. (19) and Part I, Eq. (59b) there applies

D00
r ¼ Pj j2

2W 00
r

¼ Pj j2

2W 00
e þ 2W 00

h

ð34Þ

Every iteration step, that corresponds to an admissible state AE, provides a lower bound D00
r to D, where the

kinematical conditions at the abutments are violated. The stiffness vector D and the stiffness surface F ðDÞ
are defined by (Part I, Eqs. (65a) and (66))

Di ¼ D1=2Pi= Pj j; F ðDÞ ¼ 2WrðDÞ � 1 ¼ 0 ð35Þ

The stiffness surface F ðDÞ is contained in the cone of stability EðP Þ, and F ðDÞ and EðP Þ have a common
origin at the apex of the cone EðP Þ. The load–displacement U is orthogonal to F ðDÞ. In addition:

(a’) If the load P is within the cone of the monolithic kern Ek the F ðDÞ coincides with the stiffness ellip-
soid EMðDÞ of the monolithic arch (Proposition 3, Part I).
(b’) Immediately outside Ek is a region of fDg where F ðDÞ closely follows EMðDÞ inside the ellipsoid, that
forms an osculating surface of F ðDÞ.
(c’) Farther from Ek the surface F ðDÞ withdraws from EMðDÞ with decreasing jDj. The load–displace-
ment U is orthogonal to F ðDÞ.
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(d’) For small D the stiffness surface F ðDÞ approaches asymptotically a generatrix of the cone of stability
EðP Þ and the load–displacement will approach a generatrix of NðUÞ, the normal cone of EðP Þ (Proposi-
tion 4, Part I).

Example. We consider a semicircular arch, with radius r of the centroid axis, and constant depth d. The
arch is loaded along the centroid semicircle by a radial load p constant in each quadrant; pðsÞ ¼ pð1� hÞ,
where (þ) and (�) signs are attributed to the left and right quadrants, respectively (Fig. 7a and b). To this
there corresponds a symmetric load psðsÞ ¼ p and an antimetric load paðsÞ ¼ �hp. We choose the statically
determinate state given on Fig. 7a, corresponding to a vertical resultant Ps ¼ 2rp and a horizontal resultant
Pa ¼ h2rp, respectively, at the centre C of the semicircle and three redundant forces H , Z and X . For
the loads Ps, Pa and admissible H , Z and X (with corresponding jmij6 3) lower bound approximations of the
stiffness D, the stiffness vector fDg and the stiffness surface F ðDÞ, are determined by Eqs. (34) and (35). The
maximum value of D00

r, corresponding to the actual stiffness D, is attained with the values of H , Z and X ,
satisfying Eq. (33). These values have been determined for different load-parameters h and the resulting
stiffness surface F ðDÞ is presented in Fig. 7c. The stiffness ellipse EMðDÞ, the cone EkðP Þ of the monolithic
core and the cone of stability EðP Þ of the arch with rigid voussoirs (determined by the linear theory of
stability) are

EM :
Ds

1:1324
ffiffiffiffiffiffiffiffiffiffiffi
EA=r

p
 !2

þ Da

0:29638
ffiffiffiffiffiffiffiffiffiffiffi
EA=r

p
 !2

¼ 1; EkðP Þ : Paj j � 0:046505Ps 6 0;

EðP Þ : Paj j � 0:28928Ps 6 0 ð36Þ

According to (a’)–(d’) for small h-values F ðDÞ coincides with EMðDÞ within Ek. Outside Ek the curve F ðDÞ
gradually withdraws from EMðDÞ and finally approaches asymptotically the generatrix of EðP Þ.

5. Stiffness characteristics of a prestressed segmental beam with unbonded tendon

We consider a simply supported centrically prestressed granite beam with one ungrouted tendon and a
vertical dry joint at midspan (Fig. 8). The dimensions of the beam are: depth d ¼ 45 cm, length L0 ¼ 520
cm, span L ¼ 510 cm, width b ¼ 15 cm, cross-section Ac ¼ bd ¼ 677:2 cm2, Young’s modulus Ec ¼ 48000
MPa. The tendon: cross-section Aa ¼ 5:41 cm2, Young’s modulus Ea ¼ 202000 MPa, initial prestressing
force F0 ¼ 474 kN. F0 corresponds to a prestressing dislocation

½r�0 ¼ u0xaðL0Þ � u0xcðL0Þ ¼
F0L0
EcAc

1

�
þ 1

nl

�
; n
�

¼ Ea

Ec

; l ¼ Aa

Ac

�
ð37Þ

Two loads T ¼ P=2 are applied symmetrically at distance a ¼ L=3 from the supports. They induce a mo-
ment M ¼ Pa=2 at the joint and, together with the prestress F0, at the lower edge the normal stress

rx d=2ð Þ ¼ � F0
A c

þ 3
Pa
Acd

¼ F0
Ac

ðm0 � 1Þ; m0 ¼
3Pa
F0d

ð38Þ

where m0 denotes the nominal relative eccentricity of the compressive force F0 at the joint. If m0 6 1, the
joint remains closed and rxðd=2Þ < 0. If m0 > 1, the joint opens, which induces an additional extension
Dvc ¼ cð0Þ ¼ Fa dghðmÞ=EcAc of the centroid axis and an increase in the force Fa of the tendon (Fa > F0).
Since the dislocation between granite and tendon is fixed to ½r�0, we obtain
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½r� ¼ Fa
EcAc

L0 1

��
þ 1

nl

�
� dghðmÞ

�
¼ ½r�0; m ¼ 3Pa

Fad
> 1 ð39Þ

where m is the true relative eccentricity at the joint. Because of the length of the beam segments, the pa-
rameter values gh and ah comply with Eq. (29). From Eq. (39) we can solve the value FaðP Þ iteratively (Fa is
contained in the argument m of the very nonlinear function ghðmÞ). Using Eqs. (37) and (39) the prestress
can be expressed by F0 and m

Fa ¼
F0L0ð1þ nlÞ

L0ð1þ nlÞ � dnlghðmÞ
;

m
m0

¼ L0ð1þ nlÞ � dnlghðmÞ
L0ð1þ nlÞ ð40Þ

The state of stress and strain fr; ug can be decomposed fr; ug ¼ fre; ueg þ frh; uhg, where fre; ueg rep-
resents the state of the monolithic beam without tendon loaded by two loads T ¼ P=2 with stress distri-
butions

rxe ¼ yMðxÞ=Ic; rye � 0; sxye ¼
3Q
2Ac

1
�

� ð2y=dÞ2
�
� 0 ð41a; b; cÞ

frh; uhg is the state induced by the prestress Fa and the edge effect of the opening joint and where the
deformations of the initial state (Fa ¼ F0, P ¼ 0) are not included.

The load–displacements Up are determined according to Section 2, Eqs. (3a) and (3b) using the stresses
fra

eg induced by the loads P a ¼ 1=2

Up ¼ Upe þ Uph ¼
Z L0

0

MaM dx
EcIc

þ a
2

Z
Ac

ycn
Ic

dA ¼ 5Pa3

12EcIc
þ a
2

Vhyh
Ic

ð42aÞ

The first term to the right expresses the load–deflection Upe of the monolithic beam. The second term
expresses the edge effect of the opening joint and it can, according to Eq. (10b) and analogously to Eq. (26),
be written as

Uph ¼
aVhyh
2Ic

¼ a
2

xh; xh ¼
Fad
EcAck

ahðmÞ ð42bÞ

where xh represents the concentrated rotation at the joint. Uph belongs to the additional deflection uyhðxÞ of
the beam that represents a triangular distribution with an apex at the joint. The load–displacement is thus
according to Eqs. (42a) and (42b)

Up ¼ Upe þ Uph ¼
P

12EcIc
5a3
�

þ 9a2dahðmÞ
m

�
ð43Þ

The extension of the centroid axis v and the mutual rotation x of the endfaces of the beam are recalling Eqs.
(9) and (10a) with N ¼ 0 and normal force Nc ¼ �Fa in the granite

v ¼ Vh
A

¼ Fad
E�AA

ghðmÞ; x ¼
Z L

0

M
E�II

dxþ yhVh
�II

¼ Pa2

E�II
þ FadahðmÞ

E�AAk
ð44Þ

Formulae (42a), (42b) and (43) presuppose that the material is linearly elastic and the joint interfaces are
completely smooth. In reality the roughness of the interfaces increases the deformability and the micro-
cracks in the granite induce nonlinear effects. To these should be added macrocrack phenomena.

The theoretical results were compared with experimental results obtained from a loading test according
to Fig. 8. Up to a load P=2 ¼ 48 kN cracking did not occur and the greater deformability of the structure
tested is clearly perceptible. Instead of vertical cracks a horizontal crack at load P=2 ¼ 48 kN discontin-
uously increased the displacements. This was caused by the transverse tensile stress ry at the joint with the
greatest value
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max ry ffi
Fa
Ac

ð mj j � 1Þ
ð3� mj jÞ ð45Þ

which exceeded the maximum longitudinal tensile stress rxðd=2Þ (Eq. (38)) of the undisturbed part of the
segment. The maximum ry at the joint occurs close to the border of the contact region, where rx, cn ! 0.
Because the compressive stress distribution rxðyÞ approximately approaches the triangular distribution
corresponding to crack distance k ¼ 0, the horizontal crack reduces the effective depth of the beam from d
to d0 ¼ ð3� jmjÞd=2. This implies that in the middle third of the span the effect of the longitudinal crack on
the displacements corresponds to deformation parameters (Eq. (26)) at k ¼ 0 (Parland, 1995)

d0h ffi
ðjmj � 1Þ3

3ð3� jmjÞ
a
d
; g0h ffi

ðjmj � 1Þ2

ð3� jmjÞ
a
d
; a0h ffi

ð4� jmjÞðjmj � 1Þ
3ð3� jmjÞ

a
d

ð46Þ

Using these values, upper bounds for up, vh and xh for loads above the cracking load P=2 ¼ 48 kN are
calculated. The results are shown in Figs. 8 and 9.

6. Indentation of an elastic strip on a rigid foundation by a rigid punch

Let the height of the strip be d and its thickness t, let the profile of the punch be hðxÞ ¼ U2jxjn and its
width be dp. The contact problem of the strip can be treated in two ways (Gladwell, 1980, Parland and
Miettinen, 1985):

(a) The nonlinear problem: the prescribed vertical load P 	
1 ¼

R
Cc
py dx acts on an inextensible cover of the

strip with unchanged profile hðxÞ ¼ U 	
2 jxj

n
, that defines the initial vertical gap ½r�y . The contact area Cc

increases monotonously with the load P 	
1 . The displacements ucðxÞ of the cover on Cc are determined by the

prescribed U 	
2 and the vertical translation U 0

1 of the punch. We have thus the conditions

ucyðxÞ ¼ U 0
1 � U 	

2 xj jn; ucxðxÞ ¼ 0 ð47aÞ

Fig. 9. Prestressed granite beam; elongation v and rotation x.
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Z
Cc

py dx ¼ P 	
1 ð47bÞ

(b) The semilinear problem: by releasing U2 we get according to Part I, Appendix A the complementary
conditions

ucyðxÞ ¼ U 0
1 � U 0

2 xj jn; ucxðxÞ ¼ 0 ð48aÞZ
Cc

py dx ¼ P 	
1 ;

Z
Cc

py xj jndx ¼ P 	
2 ;

Z
Cc

px dx ¼ 0 ð48bÞ

The load is defined by the prescribed vertical resultant P 	
1 and the prescribed P 	

2 that represents the nth
moment of the vectors py dx. The initial gap is zero ð½r� ¼ 0Þ and the profile of the punch deforms con-
tinuously with hðxÞ ¼ U 0

2 jxj
n
and U 0

1 and U 0
2 depend linearly on P 	

1 and P 	
2 . When P 	

1 > 0 the contact area
decreases discontinuously from dp to the fixed value 2a. In this case the multiplicity rule applies.

The difference between nonlinear and semilinear loading manifests itself by the zero point xn of uyðx; 0Þ
that expresses a nominal extent of the penetration (Fig. 10) defined by

nn ¼ xn=d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
U1=U2

n
p

=d ð49Þ

At nonlinear loading U 	
2 is fixed whereas U1 increases with P 	

1 . Therefore the penetration is represented by
parallel curves (Fig. 10a). At semilinear loading the ratio U1=U2 is independent of the load intensity and nn
attains a fixed value (Fig. 10b) at increasing load P 	

1 .
In the semilinear problem with load intensity P 	

1 , P
	
2 the external work of the load isZ

Cc

pyuy dx ¼ U 0
1

Z
Cc

py dx� U 0
2

Z
Cc

xj jnpy dx ¼ P 	
1U

0
1 � P 	

2U
0
2 ¼ P 	

1UP ð50aÞ

Fig. 10. Indentation of elastic strip. (a) Nonlinear loading. (b) Semilinear loading.
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where UP ¼ U 0
1 � ðP 	

1 =P
	
2 ÞU 0

2 . The external work equals the internal work 2W þ hp; ci, where on the upper
(y ¼ 0) edge hp; ciCc

¼ t
R

Cc
jrjjctjðtanu � tan bÞdx and on the lower (y ¼ d) edge we presuppose hp; ci ¼ 0.

Using the notations j ¼ a=d and mdnP 	
1 ¼ P 	

2 (Fig. 11) and

P 	
1UP ¼ 2W þ hp; cioY ð50bÞ

we can express U 0
1 and U 0

2 as functions of P 	
1 , m and j, which in turn are functions of u and b. If the

multiplicity rule applies we get

U 0
1 ðjÞ ¼

P 	
1

Et
gðm; jÞ; U0

2ðjÞ ¼
P 	
1

Etdn
hðm; jÞ; UPðjÞ ¼

P 	
1

Et
dðm; jÞ ð51aÞ

In the limit state of free contact gðm; jÞ, hðm; jÞ and dðm; jÞ attain at j0 ¼ a0=d extreme values gðmÞ, hðmÞ
and dðmÞ with displacements

U 0
1 ¼ P 	

1 gðmÞ
Et

; U 0
2 ¼ P 	

1 hðmÞ
Etdn

; UP ¼ P 	
1 dðmÞ
Et

ð51bÞ

where UP is the displacement of P 	
1 =2 at the distance r ¼ m1=nd from the origin. The parameters g, h and d

satisfy

dðmÞ ¼ gðmÞ � mhðmÞ ð51cÞ

With load intensity jP 	
1 j the corresponding stiffness is

D ¼
P 	
1



 


UP

¼ Et
dðmÞ ð52Þ

If the friction is nondissipative, then there applies

Wr ¼ 1

2
P 	
1UP ¼ ðP 	

1 Þ
2

2Et
dðmÞ; h ¼ � 1

2

od
om

; g ¼ �m3

2

o

om
d
m2

� �
ð53a; b; cÞ

In Appendix A are given the calculations for frictionless indentation by a wedgeshaped punch (n ¼ 1), a
parabolic punch (n ¼ 2) and an eccentrically loaded rectangular punch (n ¼ 0). The results are shown in
Figs. 11–13.

In the nonlinear case, with U 	
2 fixed and u ¼ 0, the initial gap is ½r�y ¼ U 	

2 jxj
n
. With cn ¼ �½r�y and

hp; cni ¼ P 0
2U

	
2 the work of the load P 	

1 is

P 	
1U

0
1 ¼ 2W þ P 0

2U
	
2 ; where P 0

2 ¼ t
Z a

�a
jrjjxjn dx ð54Þ

We have in this case advancing contact, where P 	
1 h ¼ EtdnU 	

2 and the contact area Cc increases, with the
load P 	

1 , gradually from zero to 2a. Using the expressions (51b) we obtain at given P 	
1 and U 	

2

P 1 ¼
P 	
1

EtdnU 	
2

¼ 1

h
; UP ¼ UP

dnU 	
2

¼ dðhÞ
h

; U 1 ¼
U 0
1

dnU 	
2

¼ gðhÞ
h

ð55Þ

where P 1 represents the dimensionless load and U
0

1 the dimensionless translation of the rigid punch, being
proportional to the nth power of the nominal penetration width (Eq. (49)). In this case upper bound so-
lutions fu0; c0g and lower bound solutions fu00; r00g with h0ðm0Þ ¼ h00ðm00Þ ¼ hðmÞ correspond to different
values of m0, m00 and m.

The stiffnesses Dp ¼ P 	
1 =Up and D1 ¼ P 	

1 =U
0
1 are expressed by the dimensionless stiffnesses as functions

of h
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Dp ¼
P 1

Up

¼ 1

dðhÞ ; D1 ¼
P1
U 1

¼ 1

gðhÞ ð56Þ

The corresponding load–displacement and stiffness-curves for n ¼ 1 are given in Fig. 14.
If the friction is purely dissipative (b ¼ 0, u ¼ q), the stiffness characteristics depend on the dissipative

work. In the semilinear case this can be written as

hp; ci ¼ t
Z

Cc

rj j ctj j tanudx ð57aÞ

with the bounds (Part I, Eq. (77a)) at the same external load P 	
1

Fig. 11. Semilinear indentation of strip by a wedge. (a) Dependence of stiffness parameters on ak=d; they attain stationary values in the
limit state. (b) Stiffness parameters versus load distance m ¼ r=d.
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hpf ; cfiu;0 ffi hp; ci6 hpb; cbiu;0 ð57bÞ

where fpf ; cfg and fpb; cbg correspond to the solutions of the nondissipative problem with bf ¼ u and
bb ¼ 0, respectively. The corresponding work expressions are

hpf ; cfiu;0 ¼ t
Z a0

�a0
rf


 

 cft


 

 tanudx; hpb; cbiu;0 ¼ t

Z a0

�a0
rb


 

 cbt



 

 tanudx ð57cÞ

Fig. 13. Indentation of a strip by a rectangular punch; (- - -) upper bound solution, tanu ¼ 0, (- - - - - -) lower bound solution,

tanu ¼ 0.

Fig. 12. Parabolic punch; semilinear indentation, tanu ¼ 0.
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The integrals in Eqs. (57a) and (57c) are confined to the slip-region Cs < 2a0. Choosing as load intensity P 	
1 ,

the work equation for purely dissipative friction (u 6¼ 0; b ¼ 0) is

P 	
1UPðu; 0Þ ¼ 2W þ t

Z
Cc

rj j ctj j tanudx ð58Þ

Recalling that UP ¼ U1 � mdnU2, and Eqs. (78c), (79a) and (80b) of Part I, and using the notation
c ¼ hpf1; cfiu;0=ðP 	

1 Þ
2
, we obtain the estimates

sup dðm;u; 0Þ6
diðm;u; 0Þ ¼ dðm;0;0Þ

2
1þ 1� 4Etc

dðm;0;0Þ

� �1=2� �

diiðm;u; 0Þ ¼ dðm;0;uÞ
2

1þ 4Etc
dðm;0;uÞ þ 1þ 4Etc

dðm;0;uÞ

� �1=2� �
8>>><
>>>:

9>>>=
>>>;

ð59Þ

inf dðm;u; 0ÞP dsðm;u; 0Þ ¼ dðm; 0;uÞ þ Etc

From Eq. (59) estimates of Up ¼ P 	
1 dðm;u; 0Þ=Et and of the stiffness Dðm;u; 0Þ ¼ P 	

1 =Up ¼ Et=dðm;u; 0Þ are
obtained (Fig. 15a).

In the nonlinear case the gap deformation, where py > 0, is as before cn ¼ �h. The work equation at the
friction (u, 0) is therefore with plv ¼ siþ jrjj; cvl ¼ cxi� hj

P 	
1U1 ¼ 2W þ ths; cxi � th rj j; cyi ¼ 2W þ t

Z þa

�a
scx dxþ t

Z þa

�a
rj jhðxÞdx ð60Þ

The work
R

scx dx is positive if no reversals of slip occur. Because hðxÞ ¼ jxjnU 	
2 and P 0

2 ¼ t
R a
�a jrjjxj

n
dx ¼

mdnP 	
1 , we can write, according to Eq. (58),

P 	
1U1 ¼ 2W þ t

Z
scx dxþ P 0

2U
	
2 ¼ P 	

1UPðu; 0Þ þ mdnP 	
1U

	
2 ð61Þ

Fig. 14. Nonlinear indentation of strip. Increasing contact. Relative load P of wedge versus relative load–displacements U 1 and UP.
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where P 	
1UP corresponds to the semilinear problem. Eq. (61) can according to Eqs. (51a)–(51c) with

U 	
2 =P

	
1 ¼ h	 be written as

P 	
1U1 ¼

ðP 	
1 Þ

2

Et
gðh	;u; 0Þ ¼ ðP 	

1 Þ
2

Et
ðdðh	;u; 0Þ þ mh	Þ ð62Þ

From this we get for given h	 the upper bound estimates

sup gðh	;u; 0Þ <
diðh	;u; 0Þ þ sup

b
ðmðbÞh	Þ

diiðh	;u; 0Þ þ sup
b
ðmðbÞh	Þ

8<
: ð63Þ

Fig. 15. Indentation of a strip by a wedge, tanu ¼ 0:75. (a) Semilinear case, shaded area corresponding to tan q ¼ 0:75 (b) nonlinear

case.
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Analogously a lower bound for P 	
1U1 at given U 	

2 is obtained

inf gðh	ÞP dsðh	;u; 0Þ þ inf
b
ðmðbÞh	Þ ð64Þ

where b is restricted to the interval ½0;u�. From Eqs. (63) and (64) corresponding estimates of the stiffness
D1 ¼ P 	

1 =U1 ¼ Et=gðhÞ are determined (Fig. 14b).

7. Summary and conclusions

The theoretical results of Part I are applied to structures with contact problems. Particular attention is
paid to the inter-relations of the following characteristics:

1. The cone of the monolithic core EkðP ; q; bÞ, where the principle of superposition remains valid.
2. The stiffness ellipsoid EMðP Þ of the monolithic structure.
3. The stiffness DðP ; q; bÞ and the stiffness surface F ðD; q; bÞ, where D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðP ; q; bÞ

p
P=jP j denotes the stiff-

ness vector.
4. The cone of stability EðP ; q; bÞ of the structure.

The effect of dry joints and cracks on a generalized displacement Ui can be extracted by decomposing the
state of stress and displacement fr; ug, at given loads, into a state fre; ueg of the elastic monolithic
structure and a state frh; uhg induced by the discontinuities at the joints Cr. Using the stressfield frieg
induced by load P i ¼ 1 acting at region Cj, Ui is then expressed by

Ui ¼ Ui
e þ Ui

h; Ui
h ¼

X
r

Z
Cr

pie 
 cdC ¼
X
r

wi
r

where Ui
e and U

i
h are the generalized displacements of the monolithic structure and a quasi rigid structure,

respectively. The wi
r represent generalized discontinuities, including translations and rotations at joint r. In

this way it is possible to decompose the nonmonolithic structure into a monolithic elastic structure and a
quasi rigid structure that deforms with partial interpenetration at the joints. The above transformation of
displacement discontinuities implies actually an extension of Reissner’s condensation of the laws governing
the displacement field of plates.

The following structures have been analysed using the principle of complementarity and the extremum
principles of stiffness and extent of contact:

(a) A rectangular panel eccentrically pressed against rigid support.
(b) Loading of a semicircular elastic voussoir arch.
(c) Bending of a prestressed segmental beam.
(d) Indentation of an elastic strip by a rigid punch.

The decomposition into a monolithic part and a quasi rigid part is most obvious in case (b) (Fig. 6 Voussoir
arch), but it is clearly perceptible also in case (c) (Fig. 8).

Concerning the friction we can distinguish between two cases:

(i) Frictional contact sliding does not occur (06 jsj < jrj tanu; includes frictionless contact).
(ii) Frictional contact sliding does occur (0 < jsj6 jrj tanu).
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In case (i) the solution is independent of the path of loading and unique, if during loading the condition
jsj < jrj tanu holds. Nonlinear contact problems with initial gaps at the joints (h > 0) and prestress
(r0 < 0) can be transformed into semilinear problems (h ¼ 0, r0 ¼ 0) by change of structure and loading.
These results have been applied to a prestressed segmental beam and to indentation problems. For the latter
case upper and lower bounds of stiffness and corresponding generalized displacements have been obtained
by elementary means (Fig. 12). From these results the displacement parameters of the nonlinear cases with
rigid stamps have been determined (Fig. 14).

In case (ii) with frictional contact sliding the solution depends on the loading path and is generally not
unique also at proportional loading. In this case with semilinear loading ði.e. r0 ¼ ½r� ¼ 0Þ the stiffness
proper DðP ;u; 0Þ in contrast to other characteristics approaches DðP ; 0;uÞ from below, the closer the more
continuous the contact is. In many cases the stiffness corresponding to nondissipative friction provides
sufficiently close bounds for Dðu; 0Þ with Dð0; 0Þ < Dðu; 0Þ < Dð0;uÞ. Still closer bounds can be established
for the infima and suprema of the stiffness Dðu; 0Þ using the contact sliding components ct of the non-
dissipative solution.

The examples of Part II indicate thus that the complications caused by the indeterminateness connected
with dissipative friction can at proportional loading be effectively reduced by the use of nondissipative
friction with conical restraints of the deformations c at the joints.
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Appendix A. Indentation without friction. Semilinear loading

To begin with we assume the interfaces at y ¼ 0 and d to be detachable (cP 0) and smooth ðu; b ¼ 0Þ.
For n ¼ 1, the semilinear case materializes if we replace the rigid wedge by two rigid plates connected by a
hinge and loaded by two symmetrical loads P 	

1 =2 at distances r from the hinge. The symmetry leads to the
equilibrium conditions at x ¼ 0 (Part I, Appendix A)

Qyð0Þ ¼
Z a

0

py dx� P 	
1 =2 ¼ 0; Mð0Þ ¼ rP 	

1 =2�
Z a

0

xj jpy dx ¼ 0 ðA:1Þ

A lower bound D00
rð0; 0Þ of the stiffness is obtained assuming a vertical uniaxial compression field

fr00
y ðx; yÞ ¼ �pyðxÞ=t; r00

x ¼ s0xy ¼ 0g, with corresponding stress energy W 00
r ¼ td

R
ðr00

y Þ
2
dx=2E. According to

the principle of the maximum stiffness, an optimal W 00
r where try ¼ �py is subjected to the constraints (A.1),

at given a, corresponds to

min
r
W 00

r ð0; 0Þ ¼
d

Eat
ððP 	

1 Þ
2 � 3P 	

1 P
	
2 =aþ 3ðP 	

2 =aÞ
2Þ ðA:2Þ

The limit state of free contact is according to Proposition 5, Part I attained at the value a0 ¼ 3P 	
2 =P

	
1 ,

where min ðW 00
r Þ attains a supremum and the displacements U1 and U2 attain extrema. Hence there applies

according to Castiglianos’s rule

sup
a

min
r
W 00

r ð0; 0Þ
� �

¼ dðP 	
1 Þ

3

3EtP 	
2

; U 00
1 ¼ dðP 	

1 Þ
2

3EtP 	
2

; U 00
2 ¼ dðP 	

1 Þ
3

9EtðP 	
2 Þ

2
; U 00

P ¼ 2dðP 	
1 Þ

2

9EtP 	
2

ðA:3Þ
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With m ¼ P 	
2 =ðdP 	

1 Þ and j00
0 ¼ d 000 =d ¼ 3m, the parameters g, h and d of Eqs. (51b) and (51c) attain the values

d00ðmÞ ¼ 2

9m
; g00ðmÞ ¼ 1

3m
; h00ðmÞ ¼ 1

9m2
ðA:4Þ

An upper bound solution is obtained using the continuous displacement fields:

Region I: jxj6 a; 06 y6 d

uy ¼ ðU1 � U2jxjÞð1� y=dÞ; ux ¼ mðU1x� U2x2=2Þ=d ðA:5Þ

with ey ¼ �ðU1 � U2 xj jÞ=d; ex ¼ �mey ; cxy ¼ �ð1� y=dÞU2signðxÞ

Region II: jxj > a and jx0j ¼ aþ a1 � jxj; jx0j6 a1

u0y ¼ ðU 0
1 � aU 0

2Þð1� y=dÞx0=a; u0x ¼ mðU 0
1 � aU 0

2Þx0=ð2a1dÞ þ C ðA:6Þ

with e0y ¼ ðU 0
1 � aU 0

2Þx0=ða1dÞ; e0x ¼ �me0y ; c0xy ¼ ðU 0
1 � aU 0

2Þx0=ða1dÞ

Region III: If jxj > aþ a1 then ux ¼ uy � 0.
The potential energy of the system is

p ¼ Et
2

Z d

0

Z aþa1

�a�a1
e2y

 
þ

c2xy
2ð1þ mÞ

!
dxdy � P 	

1U1 þ P 	
2U2 ðA:7Þ

By inserting the formulas for ey and cxy from Eqs. (A.5) and (A.6) and denoting a0=d ¼ j0, a01=d ¼ j0
1 and

c1 ¼ j0 þ j0
1=3, c2 ¼ j0ðj0 þ 2j0

1=3Þ, c3 ¼ j0ðj0 þ j0
1Þ

2
=3 the potential energy gets the form

p ¼ Etðc1ðU 0
1Þ

2 � 2c2U 0
1U

0
2 þ c3ðU 0

2Þ
2Þ � P 	

1U
0
1 þ P 	

2U
0
2 ðA:8Þ

The minimum condition of p with respect to U 0
1, U

0
2 and j0

1 gives j0
1 ¼ ð2þ 2mÞ�1=2 and according to Eq.

(51a)

d0ðm; j0Þ ¼ c1m2 � 2c2mþ c3
2ðc1c2 � ðc2Þ2Þ

; g0ðm; j0Þ ¼ c3 � c2m

2ðc1c3 � ðc2Þ2Þ
; h0ðm; j0Þ ¼ c2 � c1m

2ðc1c3 � c2Þ
ðA:9Þ

These parameters depend on j0 ¼ a0=d and because j0
0 differs only little from the value j00

0 of the AE state we
can choose j0

0 ¼ j00
0 ¼ 3m. The corresponding values d00ðmÞ, g00ðmÞ, h00ðmÞ and d0ðmÞ, g0ðmÞ, h0ðmÞ are shown

in Fig. 11b. Because of the extremum principles of stiffness, there holds

d0ðmÞ6 dðmÞ6 d00ðmÞ ðA:10Þ

The approximate solutions for semilinear problem of a punch with a parabolic profile (n ¼ 2) hðxÞ ¼ U 	
2 x

2

(Fig. 12) can be solved analogously. In the lower bound solution with P 	
2 ¼ md2P 	

1 the contact area is
determined by the limit value j00

0 ¼ ð5mÞ�1=2 and the stiffness parameters are

d00ðmÞ ¼ 0:6ð5mÞ�1=2; g00ðmÞ ¼ 0:75ð5mÞ�1=2; h00ðmÞ ¼ 0:75ð5mÞ�3=2 ðA:11Þ

An upper bound solution is obtained by replacing jxj by x2 in Eqs. (A.1) and (A.5). The stiffness parameters
are obtained from Eq. (A.9) by using

c1 ¼
3ðj0 þ j0

1Þ þ j03

3
; c2 ¼

j02ðj0 þ j0
1Þ þ j03

1

3
; c3 ¼

j03ðj0ð3j0 þ 5j0
1Þ þ 5j0

1ðj0 þ 4j0
1=3ÞÞ

15
ðA:12Þ

where again j0
0 ¼ j00

0 ¼ ð5mÞ1=2 provides a good approximation.
Smooth indentation (tanu ¼ 0) by a rectangular punch corresponds to n ¼ 0. The strip is resting on a

rigid foundation without friction but with adherence, uyðx; dÞ ¼ 0. The width of the punch is dp and the load
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is applied eccentrically at xp ¼ et ¼ mtd (Fig. 13). An upper bound solution with corresponding lower
bounds for parameters g0ðmtÞ, h0ðmtÞ and d0ðmtÞ are determined by FEM using a continuous displacement
field in the strip.

A lower bound solution for the inclined punch is obtained by using three different stress-functions F a in
the contact region a, F b in region b to the right and F c in region c to the left of a

F a ¼ gaðfÞð1� cos ptÞ þ f ðfÞ; 06 t6 t0

F b ¼ gbðfÞð1� cos ptÞ; t0 6 t < 1
F c ¼ gcðfÞð1� cos ptÞ; �1 < t6 0

ðA:13Þ

where f ¼ x=d, t ¼ y=d ¼ 2y=kdp. The stresses corresponding to functions F i are

rix ¼ gip2 cos pt; riy ¼ g00i ð1� cos ptÞ=d2 þ diaf 00=d2; sixy ¼ �ðg0ip sin ptÞ=d2 ðA:14Þ

where i ¼ a, b, c, and the commas denote differentiation with respect to f.
Because sxy ¼ 0 on the upper and lower edges of the strip and at jxj ¼ 1 the stress energy is

W ¼ t=ð2EÞ
Z Z

ðrx þ ryÞ2 dxdy ðA:15Þ

Using Kantorovich’s method, a solution is obtained by minimizing W with the conditions on the upper
edge, Eq. (A.16), and the continuity and limit state conditions, Eq. (A.17), at x ¼ 0 and x ¼ a

�t
Z a

0

ra
yðx; 0Þdy ¼ P ; �t

Z a

0

yra
yðx; 0Þdy ¼ Pet; rb

y ðx; 0Þ ¼ rc
yðx; 0Þ ¼ 0 ðA:16Þ

ra
xð0; yÞ ¼ rc

xð0; yÞ; ra
xða; yÞ ¼ rb

x ða; yÞ; saxyð0; yÞ ¼ scxyð0; yÞ; saxyða; yÞ ¼ sbxyða; yÞ ðA:17Þ

The minimum condition of W provides expressions for ga, gb, gc and f 00

ga ¼ Aa cosh pf þ Bapf cosh pf þ Ca sinh pf þ Dapf sinh pf

gb ¼ e�afðAb cos bf þ Bb sin bfÞ; a ¼ 0:6748p

gc ¼ eafðAc cos bf þ Bc sin bfÞ; b ¼ 0:3493p

f 00 ¼ �g00a þ EdðU1 � dfU2Þ

ðA:18Þ

From Eqs. (A.16) and (A.17) the 10 unknown constants Aa;Ba; . . . ;U1;U2 are determined as functions of P
and mt ¼ et=d. We express the generalized displacements by

U1 ¼
P
Et

gðmtÞ; U2 ¼
P
Etd

hðmtÞ; UP ¼ uyðet; 0Þ ¼
P
Et

dðmtÞ ðA:19Þ

where uxðx; 0Þ ¼ U1 � xU2. These U1, U2, UP correspond to contact length a, that is smaller than the width
dp of the punch. Let the value mtd correspond to a ¼ dp with ra

yðdp; 0Þ ¼ 0. We obtain the eccentricities for
mt > mtd using the superposition Lemma B.1 (Appendix B) for unchanged contact regions by applying the
load P 1 ¼ ð1� jÞP at x1 ¼ etd ¼ mtdd, and P 2 ¼ jP at x2 ¼ dp � etd. The resulting eccentricities are there-
fore, with dp ¼ 2d=k and 06 j6 1

et ¼ ð1� jÞetd þ jðd � etdÞ ¼ etd þ jðd � 2etdÞ; mt ¼ mtd þ jð2=k � 2mtdÞ ðA:20Þ

P 1 induces u1yð0; 0Þ ¼ ð1� jÞU 1
1 and P 2 induces u2yð0; 0Þ ¼ jðU 2

1 � U 2
2 dÞ ¼ jðU 2

1 � 2daU 2
2 =kÞ, where U 1

1 and
U 1
2 correspond to P 1 at x ¼ etd and U 2

1 and U 2
2 correspond to P 2 at x ¼ dp � etd. But because of the sym-

metric position of P 1 and P 2 with respect to the midpoint x ¼ dp=2, there holds: U 2
1 ¼ U 1

1 ; U
2
2 ¼ U 1

2 .
Applying the superposition rule we obtain finally
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uðx; 0Þ ¼ U1 � xU2

U1 ¼ ð1� jÞU 1
1 þ jðU 1

1 � 2daU 1
2 =kÞ ¼ U 1

1 � 2djU 1
2 =k

U2 ¼ ð1� jÞU 2
2 � jU 2

2 ¼ ð1� 2jÞU 2
2

ðA:21Þ

Recalling Eq. (A.19) we obtain

gðmÞ ¼ gðmtdÞ � 2jhðmtdÞ=k

hðmÞ ¼ ð1� 2jÞhðmtdÞ

dðmÞ ¼ bðmtdÞ � mtdhðmtdÞ

ðA:22Þ

Thus we can determine the stiffness parameters for all eccentricities et in the interval 0 < et < dp (Fig. 13).
In frictionless case applying the superposition lemma (Appendix B) the deductions for the rectangular

punch can be used to determine the stiffness characteristics for an eccentrically loaded rigid punch on the
elastic strip. Let a centrical load Pc on the punch with symmetrical profile y0 ¼ U2cjdp=2� xjn and width dp
induce a state fucg of complete contact with contact length a ¼ dp. The superposition of fucg on any so-
lution of limit state furg with the same contact length ar ¼ dp of a rectangular punch loaded by an ec-
centrical load Pr ¼ jPc provides then a solution fug for an eccentrically loaded punch with an arbitrary
symmetric profile

fug ¼ fucg þ furg; ucy ¼ U1c � U2cjdp=2� xjn; ury ¼ U1r � xU2r ðA:23Þ
where

U1c ¼
Pc
Et

gc; U1r ¼
jPc
Et

grðmtdÞ

U2c ¼
Pc
Etd

hc fixed; U2r ¼
jPc
Etdn

hrðmtdÞ
ðA:24Þ

The solution fug corresponds to a resulting load P ¼ Pcð1þ jÞ with eccentricity m ¼ e=d ¼
ð0:5þ jmtdÞ=ð1þ jÞ.

Appendix B. Uniqueness and superposition at dissipative friction

If ½r�, r0 ¼ 0 and b ¼ 0 there applies the following proposition.

Proposition B.1. If complementarity prevails and to load p	, u	 there corresponds a solution fr; ug, this so-
lution is unique provided either the normal stress r or the slip deformation ct is prescribed on every contact
surface Cc where cn ¼ 0.

Proof. The proof follows the procedure in the proof of Theorem 1 (Part I). Let us consider two solutions
fr1; u1g, fr2; u2g. Then, because of complementarity according to Eq. (52b, Part I), there holds

aðu2 � u1; u2 � u1Þ þ hp2 � p1; c2 � c1ioH ¼ 0 ðB:1aÞ
where aðu2 � u1; u2 � u1Þ is positive definite and the second term can be expressed by

hp2 � p1; c2 � c1ioH ¼ hs2 � s1; c2t i þ hs1 � s2; c1t i þ hr2 � r1; c2ni þ hr1 � r2; c1ni ðB:1bÞ
or alternatively by

hp2 � p1; c2 � c1ioH ¼ hs2; c2t � c1t i þ hs1; c1t � c2t i þ hr2; c2n � c1ni þ hr1; c1n � c2ni ðB:1cÞ
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Because stresses and deformations are admissible they are subjected to the sectional normality rule (Eq.
(20), Part I)

cit 
 ðsi=jrij � sj=jrjjÞP 0; i; j ¼ f1; 2g ðB:2Þ

If r1 ¼ r2 is prescribed on Cc then the left hand side of Eq. (B.1b) becomes nonnegative because of
Eq. (B.2). If again we prescribe c1t ¼ c2t where c1n ¼ c2n ¼ 0 the expression (B.1c) equals zero. Because
aðu2 � u1; u2 � u1Þ is positive definite, the left hand side of Eq. (B.1a) becomes nonnegative from which
there follows fr1; u1g ¼ fr2; u2g. �

The following superposition rule applies irrespective of the kind of friction.

Lemma B.1. If load fp1	; u1	g induces a state fr1; u1g with actual contact interfaces [Cc and load fp2	; u2	g
induces a state fr2; u2g with the same contact interfaces [Cc, then the load fp	; u	g ¼ fp1	 þ p2	; u1	 þ u2	g
induces a state fr; ug ¼ fr1 þ r2; u1 þ u2g with unchanged interfaces [Cc, provided that either c1, c2 or s1, s2

vanish identically on [Cc.

The lemma follows immediately from the correspondence rule and by application of Eq. (B.1a) to the
expression aðu� ðu1 þ u2Þ; u� ðu1 þ u2ÞÞ.

Lemma B.2. If a dry joint Cml constitutes a plane of symmetry in a sufficiently large part DX of the structure
an external load p	 acting on DX can be decomposed into a symmetric part p	s and an antisymmetric part p	a.
Then the region of actual contact is determined uniquely by p	s , being independent of p	a (Kalker, 1990).

Proof. Let a detachable joint Cml in the structure constitute a plane yz of symmetry with normal in direction
x. A symmetric load p	s will then induce a symmetrical state fr; ugs where the change in distance between
symmetrically situated points is Duxs ¼ uxsðxÞ � uxsð�xÞ ¼ 2uxsðxÞ. If we add to p	s an antisymmetrical load
p	a and either cta ¼ 0 or b ¼ 0 on Cml, this will induce an additional antisymmetrical state fr; uga where the
distance between symmetrically situated points does not change Duxa ¼ uxaðxÞ � uxað�xÞ ¼ 0 and the con-
tact region remains unchanged Cca ¼ Ccs. The load p	 ¼ p	s þ p	a induces a state fr; ug to which applies the
superposition rule

fr; ug ¼ fr; ugs þ fr; uga ðB:3Þ

This follows directly from Proposition B.1, Lemma B.1 and the noncommutative superposition of fr; ugs
and fr; uga. �
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